版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省校2020届高三数学上学期试题文第I卷(选择题共60分)一、选择题(本大题共12小题,每题5分,共60分.在每个小题所给出的四个选项中,只有一项为哪一项吻合题目要求的,把正确选项的代号填在答题卡的指定地址.)1.设会集,则A.B.C.D.2.复数(为虚数单位)在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.函数的大体图像为A.B.C.D.4.若,则A.B.C.D.5.双曲线的一条渐近线方程为,则该双曲线的离心率为A.B.C.D.2xy106.若满足x,y拘束条件x2y0,则zxy的最大值为x2y20-1-A.3B.1C.1D.327.已知偶函数在上单调递加,则对实数,“”是“”的A.充分不用要条件B.必要不充分条件C.充要条件D.既不充分也不用要条件8.某几何体的三视图如右图所示,数量单位为cm,它的体积是A.273cm3B.9cm322C.93cm3D.27cm3229.平面内的一条直线将平面分成2部分,两条订交直线将平面分成4部分,三条两两订交且不共点的直线将平面分成7部分,,则平面内六条两两订交且任意三条不共点的直线将平面分成的部分数为A.16B.20C.21D.2210.设函数,有且仅有一个零点,则实数的值为A.B.C.D.11.已知等差数列,,其前项和为,,则=A.B.C.D.12.若直线yxb与曲线y34xx2有公共点,则b的取值范围是A.11,22B.122,122C.122,3D.12,3第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分)13.已知函数fxx3ax1的图象在点1,f1处的切线过点11,,则a_______.14.将函数f(x)sin2x3cos2x的图象向左平移(0)个单位后看,所获取的图象关于y轴对称,则的最小值为.-2-“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为奇异数.详尽数列为1,1,2,3,5,8K,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列an为“斐波那契”数列,Sn为数列an的前项和,若a2020M则S2018__________.(用M表示)16.已知是抛物线:的焦点,点,点是上任意一点,当点在时,获取最大值,当点在时,获取最小值.则__________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必定作答,第22、23题为选考题,考生依照要求作答.)(本大题满分12分)在中,角,,所对的边分别是,,,且.(Ⅰ)求角;(Ⅱ)若,求.(本大题满分12分)为认识某校学生参加社区服务的情况,采用按性别分层抽样的方法进行检查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,获取一周参加社区服务的时间的统计数据好下表:高出1小时不高出1小时男208女12m(Ⅰ)求,;(Ⅱ)可否有95%的掌握认为该校学生一周参加社区服务时间可否高出1小时与性别有关?(Ⅲ)以样本中学生参加社区服务时间高出1小时的频率作为该事件发生的概率,现从该校学生中随机检查6名学生,试估计6名学生中一周参加社区服务时间高出1小时的人数.附:0.0500.0100.0013.8416.63510.828-3-19.(本大题满分12分).以下列图,在三棱锥中,与都是边长为2的等边三角形,、、、分别是棱、、、的中点.(I)证明:四边形为矩形;(II)若平面平面,求点到平面的距离.(本大题满分12分)已知点与定点的距离和它到直线:的距离的比是常数,点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)若直线:交曲线于,两点,当点不在、两点时,直线,的斜率分别为,,求证:,之积为定值.(本大题满分12分)已知函数,其中.(Ⅰ)若函数仅在处获取极值,求实数的取值范围;(Ⅱ)若函数有三个极值点,,,求证:.(二)选考题:共10分,请考生在第22、23题中任选一题作答.若是多做,则按所做的第一题计分.-4-[选修4-4:坐标系与参数方程](10分)在直角坐标系中,直线的参数方程为(为参数,倾斜角),曲线C的参数方程为(为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系。(Ⅰ)写出曲线的一般方程和直线的极坐标方程;(Ⅱ)若直线与曲线恰有一个公共点,求点的极坐标。设函数(Ⅰ)解不等式;(Ⅱ)若对一的确数均建立,求的取值范围.-5-文科数学试题答案1.A2.D3.B4.D5.C6.A7.A8.C9.D10.B11.A12.C13.314..15.M116.51217.(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.18.解:(Ⅰ)由已知,该校有女生400人,故,得从而.(Ⅱ)作出列联表以下:高出1小时的人数不高出1小时的人数合计男20828女12820合计321648.所以没有95%的掌握认为该校学生一周参加社区服务时间可否高出1小时与性别有关.(Ⅲ)依照以上数据,学生一周参加社区服务时间高出1小时的概率,故估计这6名学生一周参加社区服务时间高出1小时的人数是4人.-6-19.解:(1)如图,设的中点为,连接,,∵、、、分别是棱、、、的中点.∴,,且,故,且,∴四边形为平行四边形.∵与都是等边三角形,∴,,又,∴平面,故,又由上知,,∴,∴四边形为矩形.(2)如图,设交于,交于,连接,过作于.∵,平面,平面,∴平面.∴点到平面的距离等于点到平面的距离,∵在(1)的证明中有平面,平面,∴,故由可得.又∵,,∴平面,∴到平面的距离为.∵平面平面,平面平面,,平面,∴平面,∴,于是.又∵与都是边长为2的等边三角形,-7-∴,故,∴在中,,∴点到平面的距离为.20.(1)由题意,,将上式两边平方,化简:,即曲线的方程为.(2)把代入,有,设,则:,.,..即,之积为定值.21.解:(1)由,得,由仅在处获取极值,则,即.令,则,当单调递减,单调递加,则,∴当时,,此时仅一个零点,则仅一个为极值点,当时,与在同一处获取零点,此时,-8-,,,∴仅一个零点,则仅一个为极值点,所以a=e.当a>e时,显然与已知不相吻合.∴.(2)由,则.由题意则有三个根,则有两个零点,有一个零点,,令,则,∴当时取极值,时单调递加,∴,则时有两零点,,且,若证:,即证:,由,,则,即证:,由在上单调递加,即证:,又,则证,令,,∴.∴恒建立,则为增函数,∴当时,,∴得证.22.(1)由曲线的参数方程,得.∵,∴曲线的一般方程为.-9-∵直线的参数方程为(为参数,为倾斜角),∴直线的倾斜角为,且过原点(极点).∴直线的极坐标方程为,.(2)由(Ⅰ),可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度海洋工程内部施工合同范本2篇
- 2025年度绿色有机黄豆产地直供购销合作协议书4篇
- 2025年度个人房屋租赁管理服务合同范本2篇
- 2025年度全屋定制橱柜批量供货与安装合作协议4篇
- 2025年度电梯门套安装与维护保养服务合同4篇
- 二零二四年中频炉设备承包维修服务合同3篇
- 2025年度茶具电商平台数据分析与市场调研合同4篇
- 二零二五年度风力发电机组维护承包协议4篇
- 2025年度大型餐饮厨房设备采购与安装合同4篇
- 2025年度门卫人员职业健康检查合同3篇
- 中华人民共和国保守国家秘密法实施条例培训课件
- 管道坡口技术培训
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 皮肤储存新技术及临床应用
- 外研版七年级英语上册《阅读理解》专项练习题(含答案)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库必考题
- 上海市复旦大学附中2024届高考冲刺模拟数学试题含解析
- 幼儿园公开课:大班健康《国王生病了》课件
- 小学六年级说明文阅读题与答案大全
- 人教pep小学六年级上册英语阅读理解练习题大全含答案
评论
0/150
提交评论