《控制工程基础》习题解答课件_第1页
《控制工程基础》习题解答课件_第2页
《控制工程基础》习题解答课件_第3页
《控制工程基础》习题解答课件_第4页
《控制工程基础》习题解答课件_第5页
已阅读5页,还剩285页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1-3仓库大门自动控制系统原理如图所示,试说明其工作原理并绘制系统框图。放大器电动机门u2u1反馈开关绞盘第1章1-3仓库大门自动控制系统原理如图所示,试说明其工作原理并解:当合上开门开关时,u1>u2,电位器桥式测量电路产生偏差电压,经放大器放大后,驱动电机带动绞盘转动,使大门向上提起。与此同时,与大门连在一起的电位器滑动触头上移,直至桥路达到平衡(u1=u2),电机停止转动,大门开启。反之,合上关门开关时,电机反向转动,带动绞盘使大门关闭;第1章习题解答解:当合上开门开关时,u1>u2,电位器桥式测量电路产生开、关门位置电位器放大器电动机绞盘大门实际位置第1章习题解答开、关电位器放大器电动机绞盘大门实际第1章习题解答第1章习题解答1-4分析图示两个液位自动控制系统工作原理并绘制系统功能框图hqiqoa)第1章习题解答1-4分析图示两个液位自动控制系统工作第1章习题解答hqiqob)~220V浮球第1章习题解答hqiqob)~220V浮球解:对a)图所示液位控制系统:当水箱液位处于给定高度时,水箱流入水量与流出水量相等,液位处于平衡状态。一旦流入水量或流出水量发生变化,导致液位升高(或降低),浮球位置也相应升高(或降低),并通过杠杆作用于进水阀门,减小(或增大)阀门开度,使流入水量减少(或增加),液位下降(或升高),浮球位置相应改变,通过杠杆调节进水阀门开度,直至液位恢复给定高度,重新达到平衡状态。第1章习题解答解:对a)图所示液位控制系统:第1章习题解答第1章习题解答对b)图所示液位控制系统:当水箱液位处于给定高度时,电源开关断开,进水电磁阀关闭,液位维持期望高度。若一旦打开出水阀门放水,导致液位下降,则由于浮球位置降低,电源开关接通,电磁阀打开,水流入水箱,直至液位恢复给定高度,重新达到平衡状态。第1章习题解答对b)图所示液位控制系统:第1章习题解答给定液位杠杆阀门水箱实际液位浮子a)给定液位开关电磁阀水箱实际液位浮子b)第1章习题解答给定杠杆阀门水箱实际浮子a)给定开关电磁阀2-1试建立图示各系统的动态微分方程,并说明这些动态方程之间有什么特点。第2章习题解答BxiKxob)CRuiuoa)2-1试建立图示各系统的动态微分方程,并说明这些动态方程第2章习题解答R1CR2uiuoc)K1BxiK2xod)R1CR2uiuoe)K1xiK2Bxof)第2章习题解答R1CR2uiuoc)K1BxiK2xod第2章习题解答解:CRuiuoa)iBxiKxob)fB(t)fK(t)第2章习题解答解:CRuiuoa)iBxiKxob)fB第2章习题解答R1CR2uiuoc)iRiCiK1BxiK2xod)f1(t)f2(t)第2章习题解答R1CR2uiuoc)iRiCiK1Bxi第2章习题解答K1xiK2Bxof)R1CR2uiuoe)i易见:a)与b)、c)与d)、e)与f)为相似系统。第2章习题解答K1xiK2Bxof)R1CR2uiuoe第2章习题解答2-2试建立图示系统的运动微分方程。图中外加力f(t)为输入,位移x2(t)为输出。B3x1K2x2m2m1K1f(t)B1B2第2章习题解答2-2试建立图示系统的运动微分方程。图第2章习题解答解:B3x1K2x2m2m1K1f(t)B1B2第2章习题解答解:B3x1K2x2m2m1K1f(t)B第2章习题解答第2章习题解答第2章习题解答2-3试用部分分式法求下列函数的拉氏反变换。3)7)8)13)17)第2章习题解答2-3试用部分分式法求下列函数的拉氏反第2章习题解答解:3)7)第2章习题解答解:3)7)第2章习题解答8)13)第2章习题解答8)13)第2章习题解答17)第2章习题解答17)2-4利用拉氏变换求解下列微分方程。2)3)第2章习题解答解:2)2-4利用拉氏变换求解下列微分方程。2)3)第2章习3)第2章习题解答3)第2章习题解答2-6证明图示两系统具有相同形式的传递函数。R1C1C2R2uiuoK2B2xiK1B1xo第2章习题解答2-6证明图示两系统具有相同形式的传递函数。R1C1C2R解:对图示阻容网络,根据复阻抗的概念,有:其中,R1C1C2R2uiuo第2章习题解答解:对图示阻容网络,根据复阻抗的概念,有:其中,R1C1C从而:第2章习题解答从而:第2章习题解答对图示机械网络,根据牛顿第二定律,有:K2B2xiK1B1xox第2章习题解答对图示机械网络,根据牛顿第二定律,K2B2xiK1B1xox故:显然:两系统具有相同形式的传递函数。第2章习题解答故:显然:两系统具有相同形式的传递函数。第2章习题解答第2章习题解答2-8按信息传递和转换过程,绘出图示两机械系统的方框图。KB1xiB2xom输入输出K1B2xom输出K2abfi(t)输入第2章习题解答2-8按信息传递和转换过程,绘出图示两机第2章习题解答解:K1B2xo(t)m输出K2abfi(t)输入x(t)第2章习题解答解:K1B2xo(t)m输出K2abfi(第2章习题解答K1K2fi(t)xo(t)fK1(t)fK2(t)第2章习题解答K1K2fi(t)xo(t)fK1(t)f第2章习题解答KB1xiB2xom输入输出B2sXi(s)Xo(s)K+B1s第2章习题解答KB1xiB2xom输入输出B2sXi(s第2章习题解答2-10绘出图示无源电网络的方框图,并求各自的传递函数。R1C1C2R2uiuob)C1R1R2uo(t)ui(t)C2d)第2章习题解答2-10绘出图示无源电网络的方框图,并求第2章习题解答解:R1C1C2R2uiuob)i1i2第2章习题解答解:R1C1C2R2uiuob)i1i2第2章习题解答Ui(s)Uo(s)I1(s)I2(s)第2章习题解答Ui(s)Uo(s)I1(s)I2(s)第2章习题解答d)C1R1R2uo(t)ui(t)C2i1(t)i2(t)i3(t)第2章习题解答d)C1R1R2uo(t)ui(t)C2i第2章习题解答C1sUi(s)Uo(s)I1(s)I2(s)++R2第2章习题解答C1sUi(s)Uo(s)I1(s)I2(第2章习题解答C1sUi(s)Uo(s)I1(s)+R2第2章习题解答C1sUi(s)Uo(s)I1(s)+R2第2章习题解答2-11基于方框图简化法则,求图示系统的闭环传递函数。Xi(s)G1G2G3H2H1G4Xo(s)a)第2章习题解答2-11基于方框图简化法则,求图示系统的Xi(s)G1G2G3G4H1Xo(s)b)H2Xi(s)G1G2G3G4HG5Xo(s)c)第2章习题解答Xi(s)G1G2G3G4H1Xo(s)b)H2Xi(s)G第2章习题解答Xi(s)G1G2G3H2H1/G3G4Xo(s)Xi(s)G1G2G3H2H1G4Xo(s)解:a)第2章习题解答Xi(s)G1G2G3H2H1/G3G4X第2章习题解答Xi(s)G1G2G3H2+H1/G3H1/G3G4Xo(s)Xi(s)G1H1/G3G4Xo(s)第2章习题解答Xi(s)G1G2G3H2+H1/G3H1第2章习题解答Xi(s)Xo(s)G4Xi(s)Xo(s)第2章习题解答Xi(s)Xo(s)G4Xi(s)Xo(s第2章习题解答b)Xi(s)G1G2G3G4H1Xo(s)H2Xi(s)G1G2G3G4H1G2Xo(s)H2/G1第2章习题解答b)Xi(s)G1G2G3G4H1Xo(s第2章习题解答Xi(s)G2G3+G4Xo(s)H2/G1Xi(s)Xo(s)第2章习题解答Xi(s)G2G3+G4Xo(s)H2/G第2章习题解答Xi(s)Xo(s)第2章习题解答Xi(s)Xo(s)第2章习题解答Xi(s)G1G2G3G4HG5Xo(s)Hc)第2章习题解答Xi(s)G1G2G3G4HG5Xo(s)第2章习题解答Xi(s)G1G3G2G4G3HG5Xo(s)G4H第2章习题解答Xi(s)G1G3G2G4G3HG5Xo第2章习题解答Xi(s)G1G3G2G4G3HG5Xo(s)G4HXi(s)G1G3G2G4G3HG5Xo(s)G4H第2章习题解答Xi(s)G1G3G2G4G3HG5Xo(第2章习题解答Xi(s)G1G3+G2G4G5Xo(s)Xi(s)Xo(s)第2章习题解答Xi(s)G1G3+G2G4G5Xo(s)第2章习题解答2-13系统信号流图如下,试求其传递函数。Xi(s)1abc1Xo(s)fghde第2章习题解答2-13系统信号流图如下,试求其传递函数第2章习题解答解:Xi(s)1abc1Xo(s)fghed第2章习题解答解:Xi(s)1abc1Xo(s)fghe第2章习题解答2-14系统方框图如下,图中Xi(s)为输入,N(s)为扰动。求传递函数Xo(s)/Xi(s)和Xo(s)/N(s)。若要消除扰动对输入的影响(即Xo(s)/N(s)=0),试确定G0(s)值。_K4N(s)K1G0(s)Xi(s)Xo(s)+_第2章习题解答2-14系统方框图如下,图中Xi(s)为第2章习题解答解:1.令N(s)=0,则系统框图简化为:K1Xi(s)Xo(s)_所以:第2章习题解答解:1.令N(s)=0,则系统框图第2章习题解答令Xi(s)=0,则系统框图简化为:_K4G0(s)N(s)Xo(s)_2)由,有:第2章习题解答令Xi(s)=0,则系统框图简化为:3-1温度计的传递函数为1/(Ts+1),现用该温度计测量一容器内水的温度,发现需要1min的时间才能指示出实际水温98%的数值,求此温度计的时间常数T。若给容器加热,使水温以10C/min的速度变化,问此温度计的稳态指示误差是多少?第3章习题解答解:温度计的单位阶跃响应为:由题意:3-1温度计的传递函数为1/(Ts+1),现用该温度计测第3章习题解答解得:给容器加热时,输入信号:第3章习题解答解得:给容器加热时,输入信号:第3章习题解答3-2已知系统的单位脉冲响应为:xo(t)=7-5e-6t,求系统的传递函数。解:第3章习题解答3-2已知系统的单位脉冲响应为:xo(第3章习题解答3-5已知系统的单位阶跃响应为:求:1)系统的闭环传递函数;

2)系统阻尼比和无阻尼固有频率n。解:1)

第3章习题解答3-5已知系统的单位阶跃响应为:求第3章习题解答2)对比二阶系统的标准形式:

有:

第3章习题解答2)对比二阶系统的标准形式:有:第3章习题解答3-7对图示系统,要使系统的最大超调量等于0.2,峰值时间等于1s,试确定增益K和Kh的数值,并确定此时系统的上升时间tr和调整时间ts。1+KhsXo(s)Xi(s)解:第3章习题解答3-7对图示系统,要使系统的最大超调量等第3章习题解答由题意:又:第3章习题解答由题意:又:第3章习题解答3-9已知单位反馈系统的开环传递函数为:试分别求出系统在单位阶跃输入、单位速度输入和单位加速度输入时的稳态误差。解:系统为0型系统,易得:

Kp=20,Kv=Ka=0从而:essp=1/21,essv=essa=。第3章习题解答3-9已知单位反馈系统的开环传递函数为:第3章习题解答3-11已知单位反馈系统前向通道的传递函数为:1)静态误差系数Kp,Kv和Ka;2)当输入xi(t)=a0+a1t+0.5a2t2时的稳态误差。解:1)系统为I型系统,易得:2)第3章习题解答3-11已知单位反馈系统前向通道的传递函第3章习题解答3-12对图示控制系统,求输入xi(t)=1(t),扰动

n(t)=1(t)时,系统的总稳态误差。K1(s)Xi(s)Xo(s)N(s)解:当N(s)=0时,第3章习题解答3-12对图示控制系统,求输入xi(t)第3章习题解答当Xi(s)=0时,总误差:第3章习题解答当Xi(s)=0时,总误差:第3章习题解答3-16对于具有如下特征方程的反馈系统,试应用劳斯判据确定系统稳定时K的取值范围。1)2)3)4)5)第3章习题解答3-16对于具有如下特征方程的反馈系统,第3章习题解答解:1)s4 1

10

Ks3 22

2

s2 218/22 Ks1 2-484K/218s0

K第3章习题解答解:1)s4 1 10 K第3章习题解答s4 1

5

15s3 22K

K+10

s2 (109K-10)/(22K)

15s1 K+10-7260K2/(109K-10)s0 152)不存在使系统稳定的K值。第3章习题解答s4 1 5 152)不存第3章习题解答3)4)s4 1

1

1s3

K

1

s2 (K-1)/K 1s1 1-K2/(K-1)s0 1不存在使系统稳定的K值。第3章习题解答3)4)s4 1 1 1不存在第3章习题解答5)第3章习题解答5)第3章习题解答3-17已知单位反馈系统的开环传递函数为:输入信号为xi(t)=a+bt,其中K、K1、K2、Kh、T1、T2、a、b常数,要使闭环系统稳定,且稳态误差ess<

,试求系统各参数应满足的条件。第3章习题解答3-17已知单位反馈系统的开环传递函数为第3章习题解答解:系统闭环传递函数为:特征方程为:系统稳定时要求:第3章习题解答解:系统闭环传递函数为:特征方程为:系统稳第3章习题解答又系统为I型系统,稳态误差为:根据稳态误差要求有:纵上所述:第3章习题解答又系统为I型系统,稳态误差为:根据稳态误差4-2下图a为机器支承在隔振器上的简化模型,如果基础按y=Ysint振动,Y是振幅。写出机器的振幅。(系统结构图可由图b表示)第4章习题解答my=YsintBKxa)mBKxyb)4-2下图a为机器支承在隔振器上的简化模型,如果基础按y=解:根据牛顿第二定律:第4章习题解答即:根据频率特性的物理意义,易知机器振幅:解:根据牛顿第二定律:第4章习题解答即:根据频率特性的第4章习题解答4-4设单位反馈系统的开环传递函数为:当系统作用有下列输入信号时:1)xi(t)=sin(t+30)2)xi(t)=2cos(2t-45)3)xi(t)=sin(t+30)-2cos(2t-45)试求系统的稳态输出。第4章习题解答4-4设单位反馈系统的开环传递函数为:当解:系统闭环传递函数为:第4章习题解答1)xi(t)=sin(t+30)时解:系统闭环传递函数为:第4章习题解答1)xi(t)第4章习题解答2)xi(t)=2cos(2t-45)时3)xi(t)=sin(t+30)-2cos(2t-45)时第4章习题解答2)xi(t)=2cos(2t-4第4章习题解答4-6已知系统的单位阶跃响应为:试求系统的幅频特性和相频特性。解:由题意,第4章习题解答4-6已知系统的单位阶跃响应为:试求系统第4章习题解答因此,系统传递函数为:幅频特性:相频特性:第4章习题解答因此,系统传递函数为:幅频特性:相频特性:第4章习题解答4-7由质量、弹簧和阻尼器组成的机械系统如下图所示。已知质量m=1kg,K为弹簧刚度,B为阻尼系数。若外力

f(t)=2sin2t,由实验测得稳态输出xo(t)=sin(2t-/2)。试确定K和B。mf(t)KBxo(t)第4章习题解答4-7由质量、弹簧和阻尼器组成的机械系统解:根据牛顿第二定律:第4章习题解答传递函数:解:根据牛顿第二定律:第4章习题解答传递函数:由题意知:第4章习题解答解得:K=4,B=1由题意知:第4章习题解答解得:K=4,B=1第4章习题解答4-10已知系统开环传递函数如下,试概略绘出Nyquist图。1)2)3)4)5)6)第4章习题解答4-10已知系统开环传递函数如下,试概略第4章习题解答7)8)9)10)11)12)13)14)第4章习题解答7)8)9)10)11)12)13)14)解:第4章习题解答1)ReIm00+解:第4章习题解答1)ReIm00+第4章习题解答ReIm00+2)第4章习题解答ReIm00+2)第4章习题解答3)ReIm00+第4章习题解答3)ReIm00+第4章习题解答4)ReIm00+第4章习题解答4)ReIm00+第4章习题解答5)ReIm00+0+T1>T2T1<T2T1=T20+第4章习题解答5)ReIm00+0+T1>第4章习题解答6)第4章习题解答6)第4章习题解答ReIm00+9.2

=9.59第4章习题解答ReIm00+9.2=9.第4章习题解答7)ReIm00+第4章习题解答7)ReIm00+第4章习题解答8)ReIm00+-KT第4章习题解答8)ReIm00+-KT第4章习题解答9)第4章习题解答9)第4章习题解答ReIm00+-4K第4章习题解答ReIm00+-4K第4章习题解答10)ReIm00+第4章习题解答10)ReIm00+第4章习题解答11)ReIm0010.5第4章习题解答11)ReIm0010.5第4章习题解答12)ReIm00+-0.1第4章习题解答12)ReIm00+-0.1第4章习题解答13)0ReIm0+第4章习题解答13)0ReIm0+第4章习题解答14)0ReIm010第4章习题解答14)0ReIm010第4章习题解答4-10试画出下列传递函数的Bode图。1)2)3)4)5)第4章习题解答4-10试画出下列传递函数的Bode图。第4章习题解答解:1)积分环节个数:v=0惯性环节的转折频率:0.125rad/s、0.5rad/s0.0160.11100-90-180L()/dB()/deg(rad/s)-20-401812第4章习题解答解:1)积分环节个数:v=0惯性环节的转折第4章习题解答2)积分环节个数:v=2惯性环节的转折频率:0.1rad/s、1rad/s0.010.1110-270-360L()/dB()/deg(rad/s)46-40-60-80-180第4章习题解答2)积分环节个数:v=2惯性环节的转折频率第4章习题解答3)积分环节个数:v=2惯性环节的转折频率:0.1rad/s振荡环节转折频率:1rad/s,

=0.50.010.1110-270-360L()/dB()/deg(rad/s)34-40-60-100-180-450第4章习题解答3)积分环节个数:v=2惯性环节的转折频率第4章习题解答4)积分环节个数:v=2惯性环节的转折频率:0.1rad/s一阶微分环节转折频率:0.2rad/s0.010.1110-225L()/dB()/deg(rad/s)26-40-60-40-1800.2第4章习题解答4)积分环节个数:v=2惯性环节的转折频率第4章习题解答5)积分环节个数:v=1振荡环节的转折频率:1rad/s(=0.5)5rad/s(=0.4)一阶微分环节转折频率:0.1rad/s第4章习题解答5)积分环节个数:v=1振荡环节的转折频率第4章习题解答0.010.1110-270-360L()/dB()/deg(rad/s)-30-20-40-180-805-90090第4章习题解答0.010.1110-270-360L第4章习题解答4-13画出下列传递函数的Bode图并进行比较。1)2)解:惯性环节的转折频率:1/T2一阶微分环节转折频率:1/T1由题意:1/T1<1/T2第4章习题解答4-13画出下列传递函数的Bode图并进第4章习题解答系统1)和2)的Bode图如下:L()/dB()/deg(rad/s)200-900901/T11/T2系统1)系统2)180系统1)系统2)由图可见,系统1)为最小相位系统,其相角变化小于对应的非最小相位系统2)的相角变化。第4章习题解答系统1)和2)的Bode图如下:L(第4章习题解答4-14试用Nyquist稳定判据判别图示开环Nyquist

曲线对应系统的稳定性。1)-12)-1第4章习题解答4-14试用Nyquist稳定判据判别图第4章习题解答3)-14)-15)-1第4章习题解答3)-14)-15)-1第4章习题解答6)-17)-18)-1第4章习题解答6)-17)-18)-1第4章习题解答9)-110)-1第4章习题解答9)-110)-1第4章习题解答1)-1解:q

=0,

N+=0,N-

=1N

=N+-

N-

=-1

q/2。系统闭环不稳定。

2)-1q

=0,

N+=0,N-

=0N

=N+-

N-

=0=q/2。系统闭环稳定。

第4章习题解答1)-1解:q=0,N+=0第4章习题解答3)-1q

=0,

N+=0,N-

=1N

=N+-

N-

=-1=q/2。系统闭环不稳定。

4)-1q

=0,

N+=0,N-

=0N

=N+-

N-

=0=q/2。系统闭环稳定。

第4章习题解答3)-1q=0,N+=0,第4章习题解答5)-1q

=0,

N+=0,N-

=1N

=N+-

N-

=-1=q/2。系统闭环不稳定。

6)-1q

=0,

N+=1,N-

=1N

=N+-

N-

=0=q/2。系统闭环稳定。

第4章习题解答5)-1q=0,N+=0,第4章习题解答7)-1q

=0,

N+=1,N-

=1N

=N+-

N-

=0=q/2。系统闭环稳定。

8)-1q

=1,

N+=1/2,N-

=0N

=N+-

N-

=1/2=q/2。系统闭环稳定。

第4章习题解答7)-1q=0,N+=1,第4章习题解答9)-1q

=1,

N+=0,N-

=0N

=N+-

N-

=0=q/2。系统闭环不稳定。

10)-1q

=1,

N+=0,N-

=1/2N

=N+-

N-

=-1/2=q/2。系统闭环不稳定。

第4章习题解答9)-1q=1,N+=0,第4章习题解答4-15已知某系统的开环传递函数为:试确定闭环系统稳定时Kh的临界值。解:第4章习题解答4-15已知某系统的开环传递函数为:试确第4章习题解答由系统开环Nyquist曲线易见,系统临界稳定时:10Kh=1,即:Kh=0.1ReIm00+-10(1+Kh)-10Kh-1第4章习题解答由系统开环Nyquist曲线易见,系统临界第4章习题解答4-17设单位反馈系统的开环传递函数为:1)确定使系统谐振峰值M(r)=1.4的K值;2)确定使系统相位欲量

=+60的K值;3)确定使系统幅值欲量Kg=+20dB的K值。解:1)系统闭环传递函数为:第4章习题解答4-17设单位反馈系统的开环传递函数为:第4章习题解答令:系统谐振时A()达到最大值,即g()取最小值。(

=0舍去)解得:(r2<0的根舍去)第4章习题解答令:系统谐振时A()达到最大值,即g(第4章习题解答由题意:第4章习题解答由题意:第4章习题解答解得:K=-11.7552(舍去)K=365.3264K=1.2703K=0.2774(r2<0,舍去)又注意到系统特征方程为:易知,系统稳定时要求:0<K<11。因此,使系统谐振峰值M(r)=1.4的K值为:K=1.2703第4章习题解答解得:K=-11.7552(舍去)第4章习题解答2)确定使系统相位欲量

=+60的K值由解得:第4章习题解答2)确定使系统相位欲量=+60的K第4章习题解答3)确定使系统幅值欲量Kg=+20dB的K值解得:第4章习题解答3)确定使系统幅值欲量Kg=+20dB5-2已知某单位反馈系统未校正时的开环传递函数G(s)和两种校正装置Gc(s)的对数幅频特性渐近线如下图所示。第5章习题解答0.1-20G(j)Gc(j)11020-20-40

(rad/s)0L()/dBa)0.1G(j)Gc(j)11020-20-40

(rad/s)0L()/dB+20b)1005-2已知某单位反馈系统未校正时的开环传递函数G(s)和两第5章习题解答1)写出每种方案校正后的传递函数;2)画出已校正系统的对数幅频特性渐近线;3)比较这两种校正的优缺点。解:1)由图易见未校正系统开环传递函数为:校正装置a)的传递函数为:第5章习题解答1)写出每种方案校正后的传递函数;解:1)第5章习题解答校正后系统开环传递函数:校正装置b)的传递函数为:校正后系统开环传递函数:第5章习题解答校正后系统开环传递函数:校正装置b)的传递第5章习题解答2)已校正系统的对数幅频特性渐近线如下图。0.1-20G(j)Gc(j)120-20-40

(rad/s)0L()/dBa)-40-40-20Gc(j)G(j)0.1G(j)Gc(j)11020-20-40

(rad/s)0L()/dB+20b)100-40Gc(j)G(j)第5章习题解答2)已校正系统的对数幅频特性渐近线如下图。第5章习题解答3)校正装置a)为滞后校正,其优点是校正后高频增益降低,系统抗噪声能力加强;缺点是幅值穿越频率降低,响应速度降低。校正装置b)为超前校正,其优点是校正后幅值穿越频率提高,响应速度快,但系统高频段增益相应提高,抗噪声能力下降。第5章习题解答3)校正装置a)为滞后校正,其优点是校正后第5章习题解答5-3已知某单位反馈系统,其G(s)和Gc(s)的对数幅频特性渐近线如下图所示。123-20-20+20-40-60

(rad/s)L()/dB0G(j)Gc(j)第5章习题解答5-3已知某单位反馈系统,其G(s)和G第5章习题解答1)在图中绘出校正后系统的开环对数幅频特性渐近线;2)写出已校正系统的开环传递函数;3)分析Gc(s)对系统的校正作用。解:1)校正后系统的开环对数幅频特性渐近线如下图所示。第5章习题解答1)在图中绘出校正后系统的开环对数幅频特解第5章习题解答2)123-20-20+20-40-60

(rad/s)L()/dB0G(j)Gc(j)-20-40-20-20-40-60Gc(j)G(j)20lgKc20lgK20lgKKc第5章习题解答2)123-20-20+20-40-第5章习题解答3)Gc(s)为滞后—超前校正装置,其滞后部分的引入使得系统可以增加低频段开环增益,提高稳态精度,而超前部分则提高了系统的幅值穿越频率,系统带宽增加,快速性得到改善。第5章习题解答3)Gc(s)为滞后—超前校正装置,其滞后第6章习题解答6-2求下列函数的z反变换。2)4)解:2)第6章习题解答6-2求下列函数的z反变换。2)4)解:2第6章习题解答4)第6章习题解答4)第6章习题解答所以:第6章习题解答所以:第6章习题解答6-3求下列函数的初值和终值。1)3)解:1)注意到(z-1)X(z)的全部极点位于z平面的单位圆内,因此:第6章习题解答6-3求下列函数的初值和终值。1)3)解第6章习题解答3)注意到(z2-0.8z+1)的根位于z平面的单位圆上,因此不可应用z变换的终值定理进行求解。由于其单位圆上的特征根为复数,其时域输出将出现振荡,终值不定。第6章习题解答3)注意到(z2-0.8z+1)的根位于z第6章习题解答6-4用z变换求差分方程。1)解:1)对方程两端进行z变换:第6章习题解答6-4用z变换求差分方程。1)解:1)对第6章习题解答6-5已知系统的开环脉冲传递函数为:试判别系统的稳定性。解:系统闭环特征方程为:即:闭环特征跟为:0.50.618i,位于单位圆内部,故系统闭环稳定。第6章习题解答6-5已知系统的开环脉冲传递函数为:试判第6章习题解答6-8设离散系统的开环脉冲传递函数为:试求当a=1,T0=1时系统临界稳定的K值。解:a=1,T0=1时系统开环脉冲传递函数:闭环特征方程:第6章习题解答6-8设离散系统的开环脉冲传递函数为:试第6章习题解答令:系统稳定条件为:系统临界稳定K值为:K=2.39第6章习题解答令:系统稳定条件为:系统临界稳定K值为:K1-3仓库大门自动控制系统原理如图所示,试说明其工作原理并绘制系统框图。放大器电动机门u2u1反馈开关绞盘第1章1-3仓库大门自动控制系统原理如图所示,试说明其工作原理并解:当合上开门开关时,u1>u2,电位器桥式测量电路产生偏差电压,经放大器放大后,驱动电机带动绞盘转动,使大门向上提起。与此同时,与大门连在一起的电位器滑动触头上移,直至桥路达到平衡(u1=u2),电机停止转动,大门开启。反之,合上关门开关时,电机反向转动,带动绞盘使大门关闭;第1章习题解答解:当合上开门开关时,u1>u2,电位器桥式测量电路产生开、关门位置电位器放大器电动机绞盘大门实际位置第1章习题解答开、关电位器放大器电动机绞盘大门实际第1章习题解答第1章习题解答1-4分析图示两个液位自动控制系统工作原理并绘制系统功能框图hqiqoa)第1章习题解答1-4分析图示两个液位自动控制系统工作第1章习题解答hqiqob)~220V浮球第1章习题解答hqiqob)~220V浮球解:对a)图所示液位控制系统:当水箱液位处于给定高度时,水箱流入水量与流出水量相等,液位处于平衡状态。一旦流入水量或流出水量发生变化,导致液位升高(或降低),浮球位置也相应升高(或降低),并通过杠杆作用于进水阀门,减小(或增大)阀门开度,使流入水量减少(或增加),液位下降(或升高),浮球位置相应改变,通过杠杆调节进水阀门开度,直至液位恢复给定高度,重新达到平衡状态。第1章习题解答解:对a)图所示液位控制系统:第1章习题解答第1章习题解答对b)图所示液位控制系统:当水箱液位处于给定高度时,电源开关断开,进水电磁阀关闭,液位维持期望高度。若一旦打开出水阀门放水,导致液位下降,则由于浮球位置降低,电源开关接通,电磁阀打开,水流入水箱,直至液位恢复给定高度,重新达到平衡状态。第1章习题解答对b)图所示液位控制系统:第1章习题解答给定液位杠杆阀门水箱实际液位浮子a)给定液位开关电磁阀水箱实际液位浮子b)第1章习题解答给定杠杆阀门水箱实际浮子a)给定开关电磁阀2-1试建立图示各系统的动态微分方程,并说明这些动态方程之间有什么特点。第2章习题解答BxiKxob)CRuiuoa)2-1试建立图示各系统的动态微分方程,并说明这些动态方程第2章习题解答R1CR2uiuoc)K1BxiK2xod)R1CR2uiuoe)K1xiK2Bxof)第2章习题解答R1CR2uiuoc)K1BxiK2xod第2章习题解答解:CRuiuoa)iBxiKxob)fB(t)fK(t)第2章习题解答解:CRuiuoa)iBxiKxob)fB第2章习题解答R1CR2uiuoc)iRiCiK1BxiK2xod)f1(t)f2(t)第2章习题解答R1CR2uiuoc)iRiCiK1Bxi第2章习题解答K1xiK2Bxof)R1CR2uiuoe)i易见:a)与b)、c)与d)、e)与f)为相似系统。第2章习题解答K1xiK2Bxof)R1CR2uiuoe第2章习题解答2-2试建立图示系统的运动微分方程。图中外加力f(t)为输入,位移x2(t)为输出。B3x1K2x2m2m1K1f(t)B1B2第2章习题解答2-2试建立图示系统的运动微分方程。图第2章习题解答解:B3x1K2x2m2m1K1f(t)B1B2第2章习题解答解:B3x1K2x2m2m1K1f(t)B第2章习题解答第2章习题解答第2章习题解答2-3试用部分分式法求下列函数的拉氏反变换。3)7)8)13)17)第2章习题解答2-3试用部分分式法求下列函数的拉氏反第2章习题解答解:3)7)第2章习题解答解:3)7)第2章习题解答8)13)第2章习题解答8)13)第2章习题解答17)第2章习题解答17)2-4利用拉氏变换求解下列微分方程。2)3)第2章习题解答解:2)2-4利用拉氏变换求解下列微分方程。2)3)第2章习3)第2章习题解答3)第2章习题解答2-6证明图示两系统具有相同形式的传递函数。R1C1C2R2uiuoK2B2xiK1B1xo第2章习题解答2-6证明图示两系统具有相同形式的传递函数。R1C1C2R解:对图示阻容网络,根据复阻抗的概念,有:其中,R1C1C2R2uiuo第2章习题解答解:对图示阻容网络,根据复阻抗的概念,有:其中,R1C1C从而:第2章习题解答从而:第2章习题解答对图示机械网络,根据牛顿第二定律,有:K2B2xiK1B1xox第2章习题解答对图示机械网络,根据牛顿第二定律,K2B2xiK1B1xox故:显然:两系统具有相同形式的传递函数。第2章习题解答故:显然:两系统具有相同形式的传递函数。第2章习题解答第2章习题解答2-8按信息传递和转换过程,绘出图示两机械系统的方框图。KB1xiB2xom输入输出K1B2xom输出K2abfi(t)输入第2章习题解答2-8按信息传递和转换过程,绘出图示两机第2章习题解答解:K1B2xo(t)m输出K2abfi(t)输入x(t)第2章习题解答解:K1B2xo(t)m输出K2abfi(第2章习题解答K1K2fi(t)xo(t)fK1(t)fK2(t)第2章习题解答K1K2fi(t)xo(t)fK1(t)f第2章习题解答KB1xiB2xom输入输出B2sXi(s)Xo(s)K+B1s第2章习题解答KB1xiB2xom输入输出B2sXi(s第2章习题解答2-10绘出图示无源电网络的方框图,并求各自的传递函数。R1C1C2R2uiuob)C1R1R2uo(t)ui(t)C2d)第2章习题解答2-10绘出图示无源电网络的方框图,并求第2章习题解答解:R1C1C2R2uiuob)i1i2第2章习题解答解:R1C1C2R2uiuob)i1i2第2章习题解答Ui(s)Uo(s)I1(s)I2(s)第2章习题解答Ui(s)Uo(s)I1(s)I2(s)第2章习题解答d)C1R1R2uo(t)ui(t)C2i1(t)i2(t)i3(t)第2章习题解答d)C1R1R2uo(t)ui(t)C2i第2章习题解答C1sUi(s)Uo(s)I1(s)I2(s)++R2第2章习题解答C1sUi(s)Uo(s)I1(s)I2(第2章习题解答C1sUi(s)Uo(s)I1(s)+R2第2章习题解答C1sUi(s)Uo(s)I1(s)+R2第2章习题解答2-11基于方框图简化法则,求图示系统的闭环传递函数。Xi(s)G1G2G3H2H1G4Xo(s)a)第2章习题解答2-11基于方框图简化法则,求图示系统的Xi(s)G1G2G3G4H1Xo(s)b)H2Xi(s)G1G2G3G4HG5Xo(s)c)第2章习题解答Xi(s)G1G2G3G4H1Xo(s)b)H2Xi(s)G第2章习题解答Xi(s)G1G2G3H2H1/G3G4Xo(s)Xi(s)G1G2G3H2H1G4Xo(s)解:a)第2章习题解答Xi(s)G1G2G3H2H1/G3G4X第2章习题解答Xi(s)G1G2G3H2+H1/G3H1/G3G4Xo(s)Xi(s)G1H1/G3G4Xo(s)第2章习题解答Xi(s)G1G2G3H2+H1/G3H1第2章习题解答Xi(s)Xo(s)G4Xi(s)Xo(s)第2章习题解答Xi(s)Xo(s)G4Xi(s)Xo(s第2章习题解答b)Xi(s)G1G2G3G4H1Xo(s)H2Xi(s)G1G2G3G4H1G2Xo(s)H2/G1第2章习题解答b)Xi(s)G1G2G3G4H1Xo(s第2章习题解答Xi(s)G2G3+G4Xo(s)H2/G1Xi(s)Xo(s)第2章习题解答Xi(s)G2G3+G4Xo(s)H2/G第2章习题解答Xi(s)Xo(s)第2章习题解答Xi(s)Xo(s)第2章习题解答Xi(s)G1G2G3G4HG5Xo(s)Hc)第2章习题解答Xi(s)G1G2G3G4HG5Xo(s)第2章习题解答Xi(s)G1G3G2G4G3HG5Xo(s)G4H第2章习题解答Xi(s)G1G3G2G4G3HG5Xo第2章习题解答Xi(s)G1G3G2G4G3HG5Xo(s)G4HXi(s)G1G3G2G4G3HG5Xo(s)G4H第2章习题解答Xi(s)G1G3G2G4G3HG5Xo(第2章习题解答Xi(s)G1G3+G2G4G5Xo(s)Xi(s)Xo(s)第2章习题解答Xi(s)G1G3+G2G4G5Xo(s)第2章习题解答2-13系统信号流图如下,试求其传递函数。Xi(s)1abc1Xo(s)fghde第2章习题解答2-13系统信号流图如下,试求其传递函数第2章习题解答解:Xi(s)1abc1Xo(s)fghed第2章习题解答解:Xi(s)1abc1Xo(s)fghe第2章习题解答2-14系统方框图如下,图中Xi(s)为输入,N(s)为扰动。求传递函数Xo(s)/Xi(s)和Xo(s)/N(s)。若要消除扰动对输入的影响(即Xo(s)/N(s)=0),试确定G0(s)值。_K4N(s)K1G0(s)Xi(s)Xo(s)+_第2章习题解答2-14系统方框图如下,图中Xi(s)为第2章习题解答解:1.令N(s)=0,则系统框图简化为:K1Xi(s)Xo(s)_所以:第2章习题解答解:1.令N(s)=0,则系统框图第2章习题解答令Xi(s)=0,则系统框图简化为:_K4G0(s)N(s)Xo(s)_2)由,有:第2章习题解答令Xi(s)=0,则系统框图简化为:3-1温度计的传递函数为1/(Ts+1),现用该温度计测量一容器内水的温度,发现需要1min的时间才能指示出实际水温98%的数值,求此温度计的时间常数T。若给容器加热,使水温以10C/min的速度变化,问此温度计的稳态指示误差是多少?第3章习题解答解:温度计的单位阶跃响应为:由题意:3-1温度计的传递函数为1/(Ts+1),现用该温度计测第3章习题解答解得:给容器加热时,输入信号:第3章习题解答解得:给容器加热时,输入信号:第3章习题解答3-2已知系统的单位脉冲响应为:xo(t)=7-5e-6t,求系统的传递函数。解:第3章习题解答3-2已知系统的单位脉冲响应为:xo(第3章习题解答3-5已知系统的单位阶跃响应为:求:1)系统的闭环传递函数;

2)系统阻尼比和无阻尼固有频率n。解:1)

第3章习题解答3-5已知系统的单位阶跃响应为:求第3章习题解答2)对比二阶系统的标准形式:

有:

第3章习题解答2)对比二阶系统的标准形式:有:第3章习题解答3-7对图示系统,要使系统的最大超调量等于0.2,峰值时间等于1s,试确定增益K和Kh的数值,并确定此时系统的上升时间tr和调整时间ts。1+KhsXo(s)Xi(s)解:第3章习题解答3-7对图示系统,要使系统的最大超调量等第3章习题解答由题意:又:第3章习题解答由题意:又:第3章习题解答3-9已知单位反馈系统的开环传递函数为:试分别求出系统在单位阶跃输入、单位速度输入和单位加速度输入时的稳态误差。解:系统为0型系统,易得:

Kp=20,Kv=Ka=0从而:essp=1/21,essv=essa=。第3章习题解答3-9已知单位反馈系统的开环传递函数为:第3章习题解答3-11已知单位反馈系统前向通道的传递函数为:1)静态误差系数Kp,Kv和Ka;2)当输入xi(t)=a0+a1t+0.5a2t2时的稳态误差。解:1)系统为I型系统,易得:2)第3章习题解答3-11已知单位反馈系统前向通道的传递函第3章习题解答3-12对图示控制系统,求输入xi(t)=1(t),扰动

n(t)=1(t)时,系统的总稳态误差。K1(s)Xi(s)Xo(s)N(s)解:当N(s)=0时,第3章习题解答3-12对图示控制系统,求输入xi(t)第3章习题解答当Xi(s)=0时,总误差:第3章习题解答当Xi(s)=0时,总误差:第3章习题解答3-16对于具有如下特征方程的反馈系统,试应用劳斯判据确定系统稳定时K的取值范围。1)2)3)4)5)第3章习题解答3-16对于具有如下特征方程的反馈系统,第3章习题解答解:1)s4 1

10

Ks3 22

2

s2 218/22 Ks1 2-484K/218s0

K第3章习题解答解:1)s4 1 10 K第3章习题解答s4 1

5

15s3 22K

K+10

s2 (109K-10)/(22K)

15s1 K+10-7260K2/(109K-10)s0 152)不存在使系统稳定的K值。第3章习题解答s4 1 5 152)不存第3章习题解答3)4)s4 1

1

1s3

K

1

s2 (K-1)/K 1s1 1-K2/(K-1)s0 1不存在使系统稳定的K值。第3章习题解答3)4)s4 1 1 1不存在第3章习题解答5)第3章习题解答5)第3章习题解答3-17已知单位反馈系统的开环传递函数为:输入信号为xi(t)=a+bt,其中K、K1、K2、Kh、T1、T2、a、b常数,要使闭环系统稳定,且稳态误差ess<

,试求系统各参数应满足的条件。第3章习题解答3-17已知单位反馈系统的开环传递函数为第3章习题解答解:系统闭环传递函数为:特征方程为:系统稳定时要求:第3章习题解答解:系统闭环传递函数为:特征方程为:系统稳第3章习题解答又系统为I型系统,稳态误差为:根据稳态误差要求有:纵上所述:第3章习题解答又系统为I型系统,稳态误差为:根据稳态误差4-2下图a为机器支承在隔振器上的简化模型,如果基础按y=Ysint振动,Y是振幅。写出机器的振幅。(系统结构图可由图b表示)第4章习题解答my=YsintBKxa)mBKxyb)4-2下图a为机器支承在隔振器上的简化模型,如果基础按y=解:根据牛顿第二定律:第4章习题解答即:根据频率特性的物理意义,易知机器振幅:解:根据牛顿第二定律:第4章习题解答即:根据频率特性的第4章习题解答4-4设单位反馈系统的开环传递函数为:当系统作用有下列输入信号时:1)xi(t)=sin(t+30)2)xi(t)=2cos(2t-45)3)xi(t)=sin(t+30)-2cos(2t-45)试求系统的稳态输出。第4章习题解答4-4设单位反馈系统的开环传递函数为:当解:系统闭环传递函数为:第4章习题解答1)xi(t)=sin(t+30)时解:系统闭环传递函数为:第4章习题解答1)xi(t)第4章习题解答2)xi(t)=2cos(2t-45)时3)xi(t)=sin(t+30)-2cos(2t-45)时第4章习题解答2)xi(t)=2cos(2t-4第4章习题解答4-6已知系统的单位阶跃响应为:试求系统的幅频特性和相频特性。解:由题意,第4章习题解答4-6已知系统的单位阶跃响应为:试求系统第4章习题解答因此,系统传递函数为:幅频特性:相频特性:第4章习题解答因此,系统传递函数为:幅频特性:相频特性:第4章习题解答4-7由质量、弹簧和阻尼器组成的机械系统如下图所示。已知质量m=1kg,K为弹簧刚度,B为阻尼系数。若外力

f(t)=2sin2t,由实验测得稳态输出xo(t)=sin(2t-/2)。试确定K和B。mf(t)KBxo(t)第4章习题解答4-7由质量、弹簧和阻尼器组成的机械系统解:根据牛顿第二定律:第4章习题解答传递函数:解:根据牛顿第二定律:第4章习题解答传递函数:由题意知:第4章习题解答解得:K=4,B=1由题意知:第4章习题解答解得:K=4,B=1第4章习题解答4-10已知系统开环传递函数如下,试概略绘出Nyquist图。1)2)3)4)5)6)第4章习题解答4-10已知系统开环传递函数如下,试概略第4章习题解答7)8)9)10)11)12)13)14)第4章习题解答7)8)9)10)11)12)13)14)解:第4章习题解答1)ReIm00+解:第4章习题解答1)ReIm00+第4章习题解答ReIm00+2)第4章习题解答ReIm00+2)第4章习题解答3)ReIm00+第4章习题解答3)ReIm00+第4章习题解答4)ReIm00+第4章习题解答4)ReIm00+第4章习题解答5)ReIm00+0+T1>T2T1<T2T1=T20+第4章习题解答5)ReIm00+0+T1>第4章习题解答6)第4章习题解答6)第4章习题解答ReIm00+9.2

=9.59第4章习题解答ReIm00+9.2=9.第4章习题解答7)ReIm00+第4章习题解答7)ReIm00+第4章习题解答8)ReIm00+-KT第4章习题解答8)ReIm00+-KT第4章习题解答9)第4章习题解答9)第4章习题解答ReIm00+-4K第4章习题解答ReIm00+-4K第4章习题解答10)ReIm00+第4章习题解答10)ReIm00+第4章习题解答11)ReIm0010.5第4章习题解答11)ReIm0010.5第4章习题解答12)ReIm00+-0.1第4章习题解答12)ReIm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论