2023年舟山市重点中学高三第二次模拟考试数学试卷(含答案解析)_第1页
2023年舟山市重点中学高三第二次模拟考试数学试卷(含答案解析)_第2页
2023年舟山市重点中学高三第二次模拟考试数学试卷(含答案解析)_第3页
2023年舟山市重点中学高三第二次模拟考试数学试卷(含答案解析)_第4页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为()A. B. C. D.2.已知复数满足,则()A. B.2 C.4 D.33.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A. B. C. D.4.己知集合,,则()A. B. C. D.5.在中,在边上满足,为的中点,则().A. B. C. D.6.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a7.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.9.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③ B.②④ C.①②③ D.②③④10.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A. B. C. D.11.已知数列满足,则()A. B. C. D.12.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.14.已知函数.若在区间上恒成立.则实数的取值范围是__________.15.已知向量,,若向量与向量平行,则实数___________.16.函数在的零点个数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.18.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)19.(12分)(本小题满分12分)已知椭圆C:x2a2+y(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且OM+ON=t20.(12分)已知.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求的最小值.21.(12分)如图,在三棱柱中,是边长为2的等边三角形,,,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.22.(10分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】

设,,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【题目详解】解:设,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故选:D【答案点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.2.A【答案解析】

由复数除法求出,再由模的定义计算出模.【题目详解】.故选:A.【答案点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.3.A【答案解析】

由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【题目详解】由已知可得,,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,,所以;当轴时,,所以,又为锐角三角形,所以.故选:A.【答案点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.4.C【答案解析】

先化简,再求.【题目详解】因为,又因为,所以,故选:C.【答案点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.5.B【答案解析】

由,可得,,再将代入即可.【题目详解】因为,所以,故.故选:B.【答案点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.6.C【答案解析】

两复数相等,实部与虚部对应相等.【题目详解】由,得,即a,b=1.∴b=9a.故选:C.【答案点睛】本题考查复数的概念,属于基础题.7.C【答案解析】

根据充分条件和必要条件的定义结合对数的运算进行判断即可.【题目详解】∵a,b∈(1,+∞),∴a>b⇒logab<1,logab<1⇒a>b,∴a>b是logab<1的充分必要条件,故选C.【答案点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.8.C【答案解析】

将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【答案点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.9.B【答案解析】

利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【题目详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.【答案点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.10.D【答案解析】

根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【题目详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【答案点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.11.C【答案解析】

利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【题目详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【答案点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.12.A【答案解析】

将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【题目详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【答案点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【题目详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【答案点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.14.【答案解析】

首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【题目详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:【答案点睛】本题考查一元二次不等式及函数的综合问题,属于基础题.15.【答案解析】

由题可得,因为向量与向量平行,所以,解得.16.【答案解析】

求出的范围,再由函数值为零,得到的取值可得零点个数.【题目详解】详解:由题可知,或解得,或故有3个零点.【答案点睛】本题主要考查三角函数的性质和函数的零点,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1).(2).【答案解析】

(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.(2)当温度大于等于25℃时,需求量为500,求出Y=900元;当温度在[20,25)℃时,需求量为300,求出Y=300元;当温度低于20℃时,需求量为200,求出Y=﹣100元,从而当温度大于等于20时,Y>0,由此能估计估计Y大于零的概率.【题目详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p.(2)当温度大于等于25℃时,需求量为500,Y=450×2=900元,当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元,当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元,当温度大于等于20时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P.【答案点睛】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.18.(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.【答案解析】

(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前两问的结果,判断至少增加2人.【题目详解】(Ⅰ)X的取值为:9,12,15,18,24;,,,,,X的分布列为:X912151824P故X的数学期望;(Ⅱ)当P(a≤X≤b)取到最大值时,a,b的值可能为:,或,或.经计算,,,所以P(a≤X≤b)的最大值为.(Ⅲ)至少增加2人.【答案点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.19.(1)x24+【答案解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x试题解析:(1)∵e=22,  ∴又S=12×2a×2b=4∴椭圆C的标准方程为x2(2)由题意知,当直线MN斜率存在时,设直线方程为y=k(x-1),M(x联立方程x24+因为直线与椭圆交于两点,所以Δ=16k∴x又∵OM∴因为点P在椭圆x24+即2k又∵|OM即|NM|<4化简得:13k4-5k2∵t2=1-当直线MN的斜率不存在时,M(1,  62∴t∈[-1,  考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系.20.(Ⅰ);(Ⅱ).【答案解析】

(Ⅰ)当时,令,作出的图像,结合图像即可求解;(Ⅱ)结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【题目详解】(Ⅰ)令,作出它们的大致图像如下:由或(舍),得点横坐标为2,由对称性知,点横坐标为﹣2,因此不等式的解集为.(Ⅱ)..取等号的条件为,即,联立得因此的最小值为.【答案点睛】本题考查绝对值不等式、基本不等式,属于中档题21.(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【答案解析】

(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论