版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届福建省莆田第二十五中学初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在测试卷卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±202.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为()A.42° B.66° C.69° D.77°3.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B. C. D.4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是25.若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.6.2018的相反数是()A. B.2018 C.-2018 D.7.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃8.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.9.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_____米.12.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.13.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.14.分解因式:3a2﹣12=___.15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).16.分式与的最简公分母是_____.三、解答题(共8题,共72分)17.(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以,为两根且二次项系数为6的一个一元二次方程.18.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.19.(8分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.20.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.21.(8分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?22.(10分)计算﹣14﹣23.(12分)在正方形ABCD中,M是BC边上一点,且点M不与B、C重合,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.24.水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②
2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、B【答案解析】
根据完全平方式的特点求解:a2±2ab+b2.【题目详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【答案点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.2、C【答案解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.3、A【答案解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴,即,解得:EH=x,所以y=•x•x=x2,∵x、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.4、A【答案解析】测试卷解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5、A【答案解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【题目详解】解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,故选:A【答案点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.6、C【答案解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【题目详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【答案点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.7、A【答案解析】
用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【题目详解】8-(-2)=8+2=10℃.即这天的最高气温比最低气温高10℃.故选A.8、A【答案解析】
画出从正面看到的图形即可得到它的主视图.【题目详解】这个几何体的主视图为:故选:A.【答案点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9、B【答案解析】测试卷分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.测试卷解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.10、C【答案解析】
如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=1.故选C.考点:勾股定理的证明.二、填空题(本大题共6个小题,每小题3分,共18分)11、42【答案解析】
延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度.【题目详解】延长AB交DC于H,作EG⊥AB于G,如图所示:
则GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
设BH=x米,则CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故答案为42【答案点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.12、2【答案解析】分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.详解:根据三角形的三边关系,得第三边>4,而<1.又第三条边长为整数,则第三边是2.点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.13、61【答案解析】分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.详解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.点睛:此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14、3(a+2)(a﹣2)【答案解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).15、甲.【答案解析】乙所得环数的平均数为:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.16、3a2b【答案解析】
利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【题目详解】分式与的最简公分母是3a2b.故答案为3a2b.【答案点睛】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.三、解答题(共8题,共72分)17、(1)D、E、F三点是同在一条直线上.(2)6x2﹣13x+6=1.【答案解析】(1)利用切线长定理及梅氏定理即可求证;(2)利用相似和韦达定理即可求解.解:(1)结论:D、E、F三点是同在一条直线上.证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,再由切线长定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅劳斯定理的逆定理可证,D、E、F三点共线,即D、E、F三点共线.(2)∵AB=AC=5,BC=6,∴A、E、I三点共线,CE=BE=3,AE=4,连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.设⊙I的半径为r,则:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x2﹣13x+6=1.点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.18、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析【答案解析】
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.【题目详解】(1)由抛物线的对称轴是,可设解析式为.把A、B两点坐标代入上式,得解之,得故抛物线解析式为,顶点为(2)∵点在抛物线上,位于第四象限,且坐标适合,∴y<0,即-y>0,-y表示点E到OA的距离.∵OA是的对角线,∴.因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的取值范围是1<<1.(3)①根据题意,当S=24时,即.化简,得解之,得故所求的点E有两个,分别为E1(3,-4),E2(4,-4).点E1(3,-4)满足OE=AE,所以是菱形;点E2(4,-4)不满足OE=AE,所以不是菱形.②当OA⊥EF,且OA=EF时,是正方形,此时点E的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,使为正方形.19、(1)CD=;(2)m=;(3)n的值为或【答案解析】分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;(2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;(3)△成为等腰三角形可分以下几种情况讨论:①当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.详解:(1)过点作⊥,垂足为点,连接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成为等腰三角形可分以下几种情况:①当圆心、在弦异侧时i),即,由,解得.即圆心距等于、的半径的和,就有、外切不合题意舍去.ii),由,解得:,即,解得.②当圆心、在弦同侧时,同理可得:.∵是钝角,∴只能是,即,解得.综上所述:n的值为或.点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.20、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【答案解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【题目详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【答案点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.21、(1)9,9;(2)乙;(3)1680棵;【答案解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.【题目详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【答案点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.22、1【答案解析】
直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【题目详解】原式=﹣1﹣4÷+27=﹣1﹣16+27=1.【答案点睛】本题考查了实数的运算,解题的关键是熟练掌握运算顺序.23、(1)详见解析;(1)①详见解析;②BP=AB.【答案解析】
(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内陆养殖与农村文化创意产业考核试卷
- 玻璃安装合同范例范文
- 内陆养殖供应链管理与产业升级策略考核试卷
- 打造数字化客户服务体验考核试卷
- 低温仓储物流信息系统案例考核试卷
- 消防机构销售合同模板
- 中介服务租房合同模板
- 智能化工合同模板
- 物料制作类 合同范例
- 投资款无合同范例
- 会议室改造实施方案
- 江苏省南通市2024-2025学年七年级上学期期中英语试卷(含答案解析)
- 干燥装置和设备市场发展预测和趋势分析
- 2024秋期国家开放大学《公共政策概论》一平台在线形考(形考任务1至4)试题及答案
- DL∕T 516-2017 电力调度自动化运行管理规程
- 摇滚音乐课程教案
- 2024年烟叶分级工(高级)职业技能鉴定考试题库-下多选、判断题汇
- 电气工程师生涯人物访谈报告
- 中国儿童严重过敏反应诊断与治疗建议(2022年)解读
- 并网手续流程图
- 农产品经纪人培训班结业总结讲话【共4页】
评论
0/150
提交评论