2023届福建省龙岩市上杭四中学中考一模数学试题含答案解析_第1页
2023届福建省龙岩市上杭四中学中考一模数学试题含答案解析_第2页
2023届福建省龙岩市上杭四中学中考一模数学试题含答案解析_第3页
2023届福建省龙岩市上杭四中学中考一模数学试题含答案解析_第4页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届福建省龙岩市上杭四中学中考一模数学测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. B. C. D.2.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是()A.4 B.5 C.6 D.73.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元4.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90° B.60° C.45° D.30°5.下列计算错误的是()A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a46.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A.28 B.29 C.30 D.317.如果,那么代数式的值为()A.1 B.2 C.3 D.48.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:49.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B. C. D.210.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.311.下列实数中,无理数是()A.3.14 B.1.01001 C. D.12.下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.14.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.15.对于二次函数y=x2﹣4x+4,当自变量x满足a≤x≤3时,函数值y的取值范围为0≤y≤1,则a的取值范围为__.16.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.17.已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_____________.18.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:并求它的整数解的和.20.(6分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.21.(6分)如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求BODO22.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.23.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.24.(10分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.25.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.26.(12分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G,GB=GC.(1)求证:四边形ABCD是矩形;(1)若△GEF的面积为1.①求四边形BCFE的面积;②四边形ABCD的面积为.27.(12分)(1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【答案解析】测试卷解析:∵四边形ABCD是平行四边形,故选C.2、C【答案解析】测试卷分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1.故选C.3、C【答案解析】

解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=1.∴该商品的进价为1元/件.故选C.4、B【答案解析】

首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【题目详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【答案点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.5、C【答案解析】

解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选C.【答案点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.6、C【答案解析】

根据中位数的定义即可解答.【题目详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:=30,则这组数据的中位数是30;故本题答案为:C.【答案点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7、A【答案解析】

先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【题目详解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故选:A.【答案点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.8、C【答案解析】

由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【题目详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【答案点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.9、C【答案解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【题目详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10、D【答案解析】

根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【题目详解】①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;故答案选D.考点:反比例系数的几何意义.11、C【答案解析】

先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【题目详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C.【答案点睛】本题主要考查无理数的定义,属于简单题.12、A【答案解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,故选A.【答案点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【答案解析】

根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.【题目详解】设小明的速度为akm/h,小亮的速度为bkm/h,,解得,,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【答案点睛】此题考查一次函数的应用,解题关键在于列出方程组.14、1【答案解析】

根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.【题目详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴,,设CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案为1.【答案点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.15、1≤a≤1【答案解析】

根据y的取值范围可以求得相应的x的取值范围.【题目详解】解:∵二次函数y=x1﹣4x+4=(x﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x=﹣,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【答案点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.16、【答案解析】

如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.【题目详解】解:如图,设AH=x,GB=y,∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案为.【答案点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.17、【答案解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有两个不相等的实数根,∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵抛物线开口向下∴a<0∴1-k>0∴k<1.故答案为k<1.点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.18、6.2【答案解析】

根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【答案点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、0【答案解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.20、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【答案解析】

(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【题目详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350(元),方案二:6075×100﹣100×1.5×24=603900(元),∵595350<603900,∴方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(1﹣10%)2=4920.75(元/平方米),∵4920.75>4800,∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.【答案点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.21、3【答案解析】测试卷分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分别求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO22、(1);(1),E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).【答案解析】

(1)设B(x1,5),由已知条件得,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值,最终得到E点坐标.(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,得n=3或n=﹣2(舍去).求得P点坐标.【题目详解】解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴抛物线解析式为y=,(1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣x+1.由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF•OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD•OC=×(2﹣)×1=∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+.当m=1时,S四边形CDBF最大,为.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC为直角三角形.当△ABC∽△GNP,且时,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此时P点坐标为(1+,5).当△ABC∽△GNP,且时,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此时P点坐标为(3,5).综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).【答案点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.23、(1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.【答案解析】

(1)利用中点坐标公式即可得出结论;

(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;

②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;

(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【题目详解】(1)∵点C是OA的中点,A(4,4),O(0,0),∴C,∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,),∵点C,D(4,n)在双曲线上,∴,∴,∴反比例函数解析式为;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=﹣x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣x+1,设点E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1时,S△OEF最大,最大值为【答案点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.24、(1)2;(2);(3)见解析.【答案解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y=-x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP=-m²+m+,根据解析式即可求得,△MPF面积的最大值;(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F(0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当KF′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论