版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.42.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种3.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.74.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1 B.2 C.3 D.45.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.6.一个几何体的三视图如图所示,则这个几何体的体积为()A. B.C. D.7.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.8.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.9.已知函数f(x)=,若关于x的方程f(x)=kx-恰有4个不相等的实数根,则实数k的取值范围是()A. B.C. D.10.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为()A. B. C. D.11.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为()A. B. C. D.12.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.14.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.15.下图是一个算法流程图,则输出的S的值是______.16.经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是递增的等差数列,,是方程的根.(1)求的通项公式;(2)求数列的前项和.18.(12分)设函数.(1)若函数在是单调递减的函数,求实数的取值范围;(2)若,证明:.19.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.20.(12分)已知数列的各项都为正数,,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,其中表示不超过x的最大整数,如,,求数列的前2020项和.21.(12分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.22.(10分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.2、B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.3、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.4、C【解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.【详解】①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.②由题意知.因为当时,,又,所以在上恒成立,所以函数在上为单调递减函数,正确.③由题意知,当时,,此时在上为增函数,不合题意,故.令,解得.因为在上不单调,所以在上有解,需,解得,正确.④令,得.根据函数的单调性,在上的最大值只可能为或.因为,,所以最大值为64,结论错误.故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.5、C【解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵,∴,∵为纯虚数,∴,解得.故选C.【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.6、B【解析】
还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.7、A【解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.8、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.9、D【解析】
由已知可将问题转化为:y=f(x)的图象和直线y=kx-有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-的下方,即可求得:k>;再求得直线y=kx-和y=lnx相切时,k=;结合图象即可得解.【详解】若关于x的方程f(x)=kx-恰有4个不相等的实数根,则y=f(x)的图象和直线y=kx-有4个交点.作出函数y=f(x)的图象,如图,故点(1,0)在直线y=kx-的下方.∴k×1->0,解得k>.当直线y=kx-和y=lnx相切时,设切点横坐标为m,则k==,∴m=.此时,k==,f(x)的图象和直线y=kx-有3个交点,不满足条件,故所求k的取值范围是,故选D..【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题.10、D【解析】
分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.11、C【解析】
分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.12、A【解析】
根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,,则单调递增,当时,,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意.综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.14、【解析】
根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线与圆相离时,恒为锐角,故,解得从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.15、【解析】
根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.16、【解析】
作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,,,故,因此,.故答案为:.【点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)方程的两根为,由题意得,在利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前项和公式即可求出.【详解】方程x2-5x+6=0的两根为2,3.由题意得a2=2,a4=3.设数列{an}的公差为d,则a4-a2=2d,故d=,从而得a1=.所以{an}的通项公式为an=n+1.(2)设的前n项和为Sn,由(1)知=,则Sn=++…++,Sn=++…++,两式相减得Sn=+-=+-,所以Sn=2-.考点:等差数列的性质;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式、“错位相减法”、等比数列的前项和公式、一元二次方程的解法等知识点的综合应用,解答中方程的两根为,由题意得,即可求解数列的通项公式,进而利用错位相减法求和是解答的关键,着重考查了学生的推理能力与运算能力,属于中档试题.18、(1)(2)证明见解析【解析】
(1)求出导函数,由在上恒成立,采用分离参数法求解;(2)观察函数,不等式凑配后知,利用时可证结论.【详解】(1)因为在上单调递减,所以,即在上恒成立因为在上是单调递减的,所以,所以(2)因为,所以由(1)知,当时,在上单调递减所以即所以.【点睛】本题考查用导数研究函数的单调性,考查用导数证明不等式.解题关键是把不等式与函数的结论联系起来,利用函数的特例得出不等式的证明.19、(1)见解析,40元(2)6000元【解析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【点睛】考查离散型随机变量的分布列及其期望的求法,中档题.20、(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)递推公式变形为,由数列是正项数列,得到,根据数列是等比数列求通项公式;(Ⅱ),根据新定义和对数的运算分类讨论数列的通项公式,并求前2020项和.【详解】(Ⅰ)∵,∴,∴又∵数列的各项都为正数,∴,即.∴数列是以2为首项,2为公比的等比数列,∴.(Ⅱ)∵,∴,.∴数列的前2020项的和为.【点睛】本题考查根据数列的递推公式求通项公式和数列的前项和,意在考查转化与化归的思想,计算能力,属于中档题型.21、(1)极大值是,无极小值;(2)【解析】
(1)当时,可求得,令,利用导数可判断的单调性并得其零点,从而可得原函数的极值点及极大值;(2)表示出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滚动轴承传感器的互补优化设计技术考核试卷
- 六年级数学下册 新课标期末测试卷(人教版)
- 六年级数学下册 正反比例练习题(人教版)
- 智能电子秤的准确称重和数据统计考核试卷
- 饭店品牌加盟协议2024
- 指纹识别技术在网络安全中的应用考核试卷
- 《B公司共享电站商业模式创新研究》
- 2024至2030年中国饰品水晶配件数据监测研究报告
- 《高羊茅对多环芳烃萘、芘的抗性机理研究》
- 《微型流化床内菱镁矿轻烧反应特性及动力学》
- 区块链在信息安全中的应用
- 军事体育训练伤病预防课件
- JCT2094-2011 干垒挡土墙用混凝土砌块
- 前端开发生涯人物访谈报告
- 农药采购及配送服务方案(技术标)
- 《红色经典故事》课件
- 公司青马工程总结经验亮点
- 《夏天里的成长》语文教学PPT课件(6篇)
- Module+6+Problems+作文整理 外研版九年级英语上册
- 统编版语文三年级上册 第五单元素养评价 (慧眼看世界)(含答案)
- 2023年电信天翼云从业考试复习题库(含详解)
评论
0/150
提交评论