2023届上海市同济大学附属七一中学数学高一上期末学业质量监测模拟试题含解析_第1页
2023届上海市同济大学附属七一中学数学高一上期末学业质量监测模拟试题含解析_第2页
2023届上海市同济大学附属七一中学数学高一上期末学业质量监测模拟试题含解析_第3页
2023届上海市同济大学附属七一中学数学高一上期末学业质量监测模拟试题含解析_第4页
2023届上海市同济大学附属七一中学数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”的一个充分不必要条件是()A. B.C. D.2.已知集合,若,则()A.-1 B.0C.2 D.33.中国扇文化有着深厚的文化底蕴,小小的折扇传承千年的制扇工艺与书画艺术,折扇可以看作是从一个圆面中剪下的扇形制作而成,设折扇的面积为,圆面中剩余部分的面积为,当时,折扇的圆心角的弧度数为()A. B.C. D.4.在平行四边形中,与相交于点,是线段中点,的延长线交于点,若,则等于()A. B.C. D.5.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知角的始边与轴非负半轴重合,终边过点,则()A.1 B.-1C. D.7.设,则A. B.0C.1 D.8.如果两个函数的图象经过平移后能够重合,则称这两个函数为“互为生成”函数,给出下列函数:;;;,其中“互为生成”函数的是A. B.C. D.9.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.210.函数的图象大致是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于9m的弧田.按照上述经验公式计算所得弧田的面积是________.13.已知函数,若,则实数的取值范围为______.14.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________15.已知函数,则=_________16.已知函数,若在区间上的最大值是,则_______;若在区间上单调递增,则的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数=的部分图象如图所示(1)求的值;(2)求的单调增区间;(3)求在区间上的最大值和最小值18.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.19.已知幂函数的图象经过点.(1)求实数a的值;(2)用定义法证明在区间上是减函数.20.某纪念章从某年某月某日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下:上市时间天市场价元(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③;④;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.21.为了做好新冠疫情防控工作,某学校要求全校各班级每天利用课间操时间对各班教室进行药熏消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量(单位:mg)随时间(单位:)的变化情况如图所示,在药物释放的过程中与成正比,药物释放完毕后,与的函数关系为(为常数),其图象经过,根据图中提供的信息,解决下面的问题.(1)求从药物释放开始,与的函数关系式;(2)据测定,当空气中每立方米的药物含量降低到mg以下时,才能保证对人身无害,若该校课间操时间为分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.2、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C3、C【解析】设折扇的圆心角为,则圆面中剩余部分的圆心角为,根据扇形的面积公式计算可得;【详解】解:设折扇的圆心角为,则圆面中剩余部分的圆心角为,圆的半径为,依题意可得,解得;故选:C4、A【解析】化简可得,再由及选项可得答案【详解】解:由题意得,,;、、三点共线,,结合选项可知,;故选:5、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.6、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.7、B【解析】详解】故选8、D【解析】根据“互为生成”函数的定义,利用三角恒等变换化简函数的解析式,再结合函数的图象变换规律,得出结论【详解】∵;;;,故把中的函数的图象向右平移后再向下平移1个单位,可得中的函数图象,故为“互为生成”函数,故选D【点睛】本题主要主要考查新定义,三角恒等变换,函数的图象变换规律,属于中档题9、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D10、A【解析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用三角函数的周期公式,求出函数的周期即可.【详解】函数中,.故答案为:【点睛】本题考查三角函数的周期公式的应用,是基础题.12、.【解析】如下图所示,在中,求出半径,即可求出结论.【详解】设弧田的圆心为,弦为,为中点,连交弧为,则,所以矢长为,在中,,,所以,,所以弧田的面积为.故答案为:.【点睛】本题以数学文化为背景,考查直角三角形的边角关系,认真审题是解题的关键,属于基础题.13、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.14、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等15、【解析】按照解析式直接计算即可.【详解】.故答案为:-3.16、①.②.【解析】根据定义域得,再得到取最大值的条件求解即可;先得到一般性的单调增区间,再根据集合之间的关系求解.【详解】因为,且在此区间上的最大值是,所以因为f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在区间上单调递增又因在区间上单调递增,所以<,即所以的取值范围是故答案为:1,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)单调递增区间为(3)时,取得最大值1;时,f(x)取得最小值【解析】(1)利用图象的最高点和最低点的纵坐标确定振幅,由相邻对称轴间的距离确定函数的周期和值;(2)利用正弦函数的单调性和整体思想进行求解;(3)利用三角函数的单调性和最值进行求解试题解析:(1)由图象知由图象得函数最小正周期为=,则由=得(2)令..所以f(x)的单调递增区间为(3)..当即时,取得最大值1;当即时,f(x)取得最小值18、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据函数的单调性求出a的范围即可;(Ⅲ)根据二次函数的性质通过讨论m的范围,结合函数的最小值,求出m的值即可【详解】(I)函数的图象过点(II)由(I)知恒成立即恒成立令,则命题等价于而单调递增即(III),令当时,对称轴①当,即时,不符舍去.②当时,即时.符合题意.综上所述:【点睛】本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想以及分类讨论思想,换元思想,是一道中档题19、(1);(2)证明见解析.【解析】(1)将点代入函数解析式运算即可得解;(2)利用函数单调性的定义,任取,且,通过作差证明即可得证.【详解】(1)的图象经过点,,即,解得,(2)证明:由(1)得任取,且,则,,,且,,即,在区间内是减函数.20、(1)②;(2)上市天,最低价元【解析】(1)根据所给的四个函数的单调性,结合表中数据所表示的变化特征进行选择即可;(2)根据表中数据代入所选函数的解析式,用待定系数法求出解析式,最后利用函数的单调性求出纪念章市场价最低时的上市天数及最低的价格.【详解】(1)通过表中数据所知纪念章的市场价与上市时间的变化先是递减而后递增,而已知所给的函数中除了②以外,其他函数要么是单调递增,要么是单调递减,要么是常值函数,所以选择②;(2)由(1)可知选择的函数解析式为:.函数图象经过点,代入解析式中得:,显然当时,函数有最小值,最小值为26.所以该纪念章时的上市20天时市场价最低,最低的价格26元.【点睛】本题考查了根据实际问题选择函数模型,考查了函数的单调性的判断,考查了二次函数的单调性及最值,考查了数学运算能力.21、(1);(2)可以,理由见解析.【解析】(1)将图象上给定点的坐标代入对应的函数解析式计算作答.(2)利用(1)的结论结合题意,列出不等式求解作答.【小问1详解】依

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论