2023届闽粤赣三省十二校数学高一上期末学业质量监测试题含解析_第1页
2023届闽粤赣三省十二校数学高一上期末学业质量监测试题含解析_第2页
2023届闽粤赣三省十二校数学高一上期末学业质量监测试题含解析_第3页
2023届闽粤赣三省十二校数学高一上期末学业质量监测试题含解析_第4页
2023届闽粤赣三省十二校数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值2.若点在角的终边上,则()A. B.C. D.3.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A,B为两个等高的几何体,p:A、B的体积相等,q:A、B在同一高处的截面积相等.根据祖暅原理可知,p是q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.已知全集,则正确表示集合和关系的韦恩图是A. B.C. D.5.计算(16A.-1 B.1C.-3 D.36.设函数的定义域,函数的定义域为,则()A. B.C. D.7.函数,对任意的非零实数,关于的方程的解集不可能是A B.C. D.8.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)9.零点所在的区间是()A. B.C. D.10.在平行四边形中,与相交于点,是线段中点,的延长线交于点,若,则等于()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】12.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________13.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________14.已知是定义在正整数集上的严格减函数,它的值域是整数集的一个子集,并且,,则的值为___________.15.已知,,且,则的最小值为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知(1)化简;(2)若=2,求的值.17.已知角的终边经过点.(1)求的值;(2)求的值.18.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.19.已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,关于的方程有实数根,求实数的取值范围.20.已知,.(1)若,求;(2)若,求实数的取值范围.21.已知函数,(,,),且的图象相邻两个对称轴之间的距离为,且任意,都有恒成立.(1)求的最小正周期与对称中心;(2)若对任意,均有恒成立,求实数的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B2、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数定义可得.故选:A.3、C【解析】根据与的推出关系判断【详解】已知A,B为两个等高的几何体,由祖暅原理知,而不能推出,可举反例,两个相同的圆锥,一个正置,一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则是的必要不充分条件故选:C4、B【解析】∵集合∴集合∵集合∴故选B5、B【解析】原式=故选B6、B【解析】求出两个函数的定义域后可求两者的交集.【详解】由得,由得,故,故选:B.【点睛】本题考查函数的定义域和集合的交,函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.7、D【解析】由题意得函数图象的对称轴为设方程的解为,则必有,由图象可得是平行于x轴的直线,它们与函数的图象必有交点,由函数图象的对称性得的两个解要关于直线对称,故可得;同理方程的两个解也要关于直线对称,同理从而可得若关于的方程有一个正根,则方程有两个不同的实数根;若关于的方程有两个正根,则方程有四个不同的实数根综合以上情况可得,关于的方程的解集不可能是.选D非选择题8、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.9、C【解析】利用零点存在定理依次判断各个选项即可.【详解】由题意知:在上连续且单调递增;对于A,,,内不存在零点,A错误;对于B,,,内不存在零点,B错误;对于C,,,则,内存在零点,C正确;对于D,,,内不存在零点,D错误.故选:C.10、A【解析】化简可得,再由及选项可得答案【详解】解:由题意得,,;、、三点共线,,结合选项可知,;故选:二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【点睛】本题考查了空间中点的坐标与应用问题,是基础题12、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、13、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.14、【解析】利用严格单调减函数定义求得值,然后在由区间上整数个数,可确定的值【详解】,根据题意,,又,,所以,即,,在上只有13个整数,因此可得,故答案为:15、【解析】由已知凑配出积为定值,然后由基本不等式求得最小值【详解】因为,,且,所以,当且仅当,即时等号成立故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)=(2)2【解析】(1)利用诱导公式即可化简.(2)利用同角三角函数的基本关系化简并将(1)中的数据代入即可.【详解】解:(1).(2)由(1)知,【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系“齐次式”的运算,需熟记公式,属于基础题.17、(1);(2).【解析】因为角终边经过点,设,,则,所以,,.(1)即得解;(2)化简即可得解.试题解析:因为角终边经过点,设,,则,所以,,.(1)(2)18、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.②证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.【点睛】主要考查对诱导公式的掌握以及推导过程,熟练运用任意角三角函数的定义,属于基础题.19、(1),(2)【解析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最高点可求得的值,即可得的解析式,由正弦函数的对称中心可得对称中心;(2)由图象的平移变换求得的解析式,由正弦函数的性质可得的值域,令的取值为的值域,解不等式即可求解.【小问1详解】由题意可得:,可得,所以,因为,所以,可得,所以,由可得,因为,所以,,所以.令可得,所以对称中心为.【小问2详解】由题意可得:,当时,,,若关于的方程有实数根,则有实根,所以,可得:.所以实数的取值范围为.20、(1);(2).【解析】(1)根据题意,分别求出集合、,即可得到;(2)根据题意得,结合,即可得到实数的取值范围.【详解】(1)当时,,或,因此.(2)由(1)知,或,故,又因,所以,解得,故实数的取值范围是21、(1);,;(2).【解析】(1)由题意可知,再由求出,由恒成立,可得,即,求出,根据正弦函数的对称中心,,即可求解.(2)由题意可知,讨论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论