高考数学圆锥曲线与方程解题技巧方法总结_第1页
高考数学圆锥曲线与方程解题技巧方法总结_第2页
高考数学圆锥曲线与方程解题技巧方法总结_第3页
高考数学圆锥曲线与方程解题技巧方法总结_第4页
高考数学圆锥曲线与方程解题技巧方法总结_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学圆锥曲线与方程解题技巧方法总结高考数学圆锥曲线与方程解题技巧方法总结高考数学圆锥曲线与方程解题技巧方法总结V:1.0精细整理,仅供参考高考数学圆锥曲线与方程解题技巧方法总结日期:20xx年X月圆锥曲线与方程解题技巧方法总结学习目标:熟悉并掌握常见的圆锥曲线的解题方法:定义法、参数法、待定系数法、点差法等重点难点:数形结合、函数与方程、转化与划归等解题思想的应用题型一圆锥曲线定义的应用规律与方法:1、圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.2、研究有关点间的距离的最值问题时,常用定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.若点M(2,1),点C是椭圆eq\f(x2,16)+eq\f(y2,7)=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最小值是________跟踪训练1已知椭圆eq\f(x2,9)+eq\f(y2,5)=1,F1、F2分别是椭圆的左、右焦点,点A(1,1)为椭圆内一点,点P为椭圆上一点,求|PA|+|PF1|的最大值.题型二有关圆锥曲线性质的问题规律与方法有关圆锥曲线的焦点、离心率、渐近线等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解.例2已知椭圆eq\f(x2,3m2)+eq\f(y2,5n2)=1和双曲线eq\f(x2,2m2)-eq\f(y2,3n2)=1有公共的焦点,那么双曲线的渐近线方程是 ()A.x=±eq\f(\r(15),2)y B.y=±eq\f(\r(15),2)xC.x=±eq\f(\r(3),4)y D.y=±eq\f(\r(3),4)x跟踪训练2已知双曲线eq\f(x2,a2)-eq\f(y2,b2)=1的离心率为2,焦点与椭圆eq\f(x2,25)+eq\f(y2,9)=1的焦点相同,那么双曲线的焦点坐标为________;渐近线方程为________.题型三直线与圆锥曲线位置关系问题规律与方法:1.直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行.2.有关直线与圆锥曲线的位置关系的题目可能会涉及直线与圆锥曲线的关系中的弦长、焦点弦及弦中点问题、取值范围、最值等问题.3.这类问题综合性强,分析这类问题,往往利用数形结合的思想和“设而不求”的方法、对称的方法及根与系数的关系等.例3已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的离心率为eq\f(\r(6),3),短轴一个端点到右焦点的距离为eq\r(3).(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为eq\f(\r(3),2),求△AOB面积的最大值.跟踪训练3已知向量a=(x,eq\r(3)y),b=(1,0)且(a+eq\r(3)b)⊥(a-eq\r(3)b).(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围题型四与圆锥曲线有关的轨迹问题规律与方法:轨迹是动点按一定规律运动而形成的,轨迹的条件可以用动点坐标表示出来.求轨迹方程的基本方法是(1)直接法求轨迹方程:建立适当的直角坐标系,根据条件列出方程;(2)待定系数法求轨迹方程:根据曲线的标准方程;(3)定义法求轨迹方程:动点的轨迹满足圆锥曲线的定义;(4)代入法求轨迹方程:动点M(x,y)取决于已知曲线C上的点(x0,y0)的坐标变化,根据两者关系,得到x,y,x0,y0的关系式,用x,y表示x0,y0,代入曲线C的方程.例4如图,已知线段AB=4,动圆O1与线段AB切于点C,且AC-BC=2eq\r(2),过点A、B分别作圆O1切线,两切线交于点P,且P、O1均在AB的同侧,求动点P的轨迹方程.跟踪训练4若动圆P过点N(-2,0),且与另一圆M:(x-2)2+y2=8相外切,求动圆P的圆心的轨迹方程.课堂练习:1.已知F1、F2为双曲线eq\f(x2,5)-eq\f(y2,4)=1的左、右焦点,P(3,1)为双曲线内一点,点A在双曲线的右支上,则|AP|+|AF2|的最小值为 ()\r(37)+4 \r(37)-4\r(37)-2eq\r(5) \r(37)+2eq\r(5)2.已知双曲线eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)和椭圆eq\f(x2,16)+eq\f(y2,9)=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为_____________.3.一动圆与圆(x+3)2+y2=1外切,又与圆(x-3)2+y2=9内切,则动圆圆心的轨迹方程为________________4.已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1)、B(x2,y2)两点,则yeq\o\al(2,1)+y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论