经典竞赛几何题_第1页
经典竞赛几何题_第2页
经典竞赛几何题_第3页
经典竞赛几何题_第4页
经典竞赛几何题_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绝密★启用前2023年05月17日张朋松的初中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.解答题(共50小题)1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.(1)求证:PN=QN;(2)求证:MN⊥BC.12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC.16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)试猜想∠MPB与∠FCM数量关系并证明.17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.(1)求证:CE=BF;(2)探索线段CE与AB+AC之间的数量关系,并证明.24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=DC=10,求AC的长.26.如图,已知线段AB的同侧有两点C、D满足∠ACB=∠ADB=60°,∠ABD=90°﹣∠DBC.求证:AC=AD.27.如图,正方形ABDE和ACFG是以△ABC的AB、AC为边的正方形,P、Q为它们的中心,M是BC的中点,试判断MP、MQ在数量和位置是有什么关系?并证明你的结论.28.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.29.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.30.已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,(1)求:∠AOC的度数;(2)求证:AC=AE+CD.31.如图,已知△ABC中AB>AC,P是角平分线AD上任一点,求证:AB﹣AC>PB﹣PC.32.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.33.如图已知△ABC中,AB=AC,∠ABD=60°,且∠ADB=90°﹣∠BDC,求证:AB=BD+DC.34.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE度数.35.如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点E在射线NA上,且NE=2NA,求证:BD⊥DE.36.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.37.如图,△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD.求证:BD=CD.38.如图所示,在△ABF中,已知BC=CE=EF,∠BAC=∠CAD=∠DAE=45°,求的值.39.如图,已知过△ABC的顶点A,在∠BAC内部任意作一条射线,过B、C分别作此射线的垂线段BD、CE,M为BC边中点.求证:MD=ME.40.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E求证:.41.已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.42.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.43.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.求证:DE=CF.44.如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF的延长线上且BP=AC,CQ=AB,(1)求证:△ABP≌△QCA.(2)AP和AQ的位置关系如何,请给予证明.45.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,说明BG=CF的理由.46.在△ABC中,∠ACB=90°,D是AB上一点,M是CD的中点,若∠AMD=∠BMD,求证:∠CDA=2∠ACD.47.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.48.如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.49.已知△ABC,∠C=90°,AC=BC.M为AC中点,延长BM到D,使MD=BM;N为BC中点,延长NA到E,使AE=NA,连接ED,求证:ED⊥BD.50.如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.2023年05月17日张朋松的初中数学组卷参考答案与试题解析一.解答题(共50小题)1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.【分析】EF为中位线,所以EF∥BC,又因为∠HFE和∠FHB,∠DEF和∠CDE分别为一组平行线的对角,所以相等;转化成求证∠FHB=∠CDE.【解答】证明:∵E,F分别为AC,AB的中点,∴EF∥BC,根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;同理可证∠CDE=∠B,∴∠DEF=∠B.又∵AH⊥BC,且F为AB的中点,∴HF=BF,∴∠B=∠BHF,∴∠HFE=∠B=∠DEF.即∠HFE=∠DEF.【点评】本题考查了三角形的中位线定理,平行四边形的判定,直角三角形中斜边的中线为斜边边长的一半.3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.【分析】(1)可证明△ACF≌△CAE,再由角平分线的性质得出∠OAC=∠OCA,从而得出OE=OF;(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.根据角平分线的性质定理以及逆定理可推得点O在∠B的平分线上,从而得出∠OBN=∠OBM=30°,由已知得出∠OEM=∠OFN,能证明Rt△OFN≌Rt△OEM,则OE=OF成立.【解答】证明:(1)∵∠B=60°,AB=BC,∴∠A=∠C=60°,∵AECF分别平分∠A,∠C,∴∠OAC=∠OCA=30°,∴OA=OC,△ACF≌△CAE(ASA),∴AE=CF,∴OE=OF;(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.∵点O在∠A,∠C的平分线上,∴ON=OH,OH=OM,从而OM=ON,∴点O在∠B的平分线上(1分)∴∠OBN=∠OBM=30°,ON=OM(2分)又∠OEM=∠B+∠A=60°+∠A∠OFN=∠A+∠C=(∠A+∠C)+∠A=(180°﹣60°)+∠A=60°+∠A.∴∠OEM=∠OFN.(2分)∴Rt△OFN≌Rt△OEM(AAS),(1分)∴OE=OF.(1分)【点评】本题考查了全等三角形的判定和性质以及角平分线的性质,注意一题多解以及方法的简单性.4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.【分析】首先作出EI⊥AB,DH⊥AB,证明△EAI≌△DCF再得出DH=DF进而得出△EKI≌△DKH即可证出.【解答】解:结论:EK=DK.(2分)理由:过点E作EI⊥AB,过点D作DH⊥AB于H,DF⊥BC于F,在△EAI和△DCF中∵,∴△EAI≌△DCF(AAS),(2分)∴EI=DF,(2分)∵BD是∠ABC的平分线,∴DH=DF,(2分)∴DH=EI,在△EKI和△DKH中,∵,∴△EKI≌△DKH(AAS),(2分)∴EK=DK.(2分)【点评】此题主要考查了三角形全等证明方法,根据题意作出EI⊥AB,DH⊥AB,从而利于全等证明是解决问题的关键.5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.【分析】延长AC、BE交于点M,易证得△ACD≌△BCM,可得AD=BM①,可证得△AEM≌△AEB,可得EM=BE,即BM=2BE②,由①②即可得结论.【解答】解:如图,延长AC、BE交于点M,∵∠A的平分线AD,BE垂直AD于E,∴∠MAE=∠BAE,∠AEM=∠AEB=90°,∵AE=AE,∴△AEM≌△AEB(ASA),∴EM=BE,即BM=2BE①;∵∠A的平分线AD,AC=BC,∠C=90°,∴∠CAD=∠DAB=22.5°,∠ABC=45°,∵BE垂直AD于E,∴∠DAB+∠ABC+∠DBE=90°,即∠DBE=22.5°,∴∠CAD=∠DBE,又∵AC=BC,且∠ACB=∠BCM=90°,∴△ACD≌△BCM(ASA),∴AD=BM②;由①②得AD=2BE,即BE=AD.【点评】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、三角形内角和定理等知识点,正确作出辅助线是解题的关键.6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.【分析】先延长DB,使BE=CD,连接AE,BC,根据已知条件得出A,B,D,C四点共圆,得出∠ACB=∠ADE,再根据等边三角形的性质得出△ABC是等边三角形,在△ABE和△ACD中,根据SAS得出△ABE≌△ACD,得出△ADE是等边三角形,得出AD=DE,再根据DE=BD+BE,即可证出AD=BD+CD.【解答】解:延长DB,使BE=CD,连接AE,BC,∵∠BAC+∠ACD+∠BDC+∠ABD=360°,∠BAC=60°,∠BDC=120°,∴∠ABD+∠ACD=180°,∴A,B,D,C四点共圆,∴∠ACB=∠ADE,∵∠ABD+∠ABE=180°,∴∠ABE=∠ACD,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∴∠ADE=60°,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AE=AD,∴△ADE是等边三角形,∴AD=DE,∵DE=BD+BE,∴AD=BD+CD.【点评】此题考查了全等三角形的判定与性质,用到的知识点是等边三角形的性质,全等三角形的判定与性质和三角形内角和定理,关键是根据题意作出辅助线.7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.【分析】由三角形的中位线得,MS∥AE,MS=AE,HS∥CF,HS=CF,由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD.【解答】证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM,∵GHM分别为BD,AC,EF的中点,∴MS∥AE,MS=AE,HS∥CF,HS=CF,∵GT∥CD,HT∥AB,GT=CD,HT=AB,∴GT∥HS,HT∥SM,∴∠SHM=∠TGH,∠SMH=∠THG,∴∠TGH=∠THG,∴GT=TH,∴AB=CD.【点评】本题考查了三角形的中位线定理以及平行线的性质.8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.【分析】延长CE、BA交于P,易证△CDE≌△BCF,可得∠CFB=∠DEC,即可求得CE⊥BF,进而可以求证△PAE∽△PBC,可得PA=AB,根据直角三角形斜边中线等于斜边一半性质即可解题.【解答】解:延长CE、BA交于P,∵在△CDE和△BCF中,,∴△CDE≌△BCF;(SAS)∴∠CFB=∠DEC,∵∠FCG+∠DEC=90°,∴∠FCG+∠CFB=90°,∴CE⊥BF,∴△PAE∽△PBC,==,∴A是PB的中点,即AB=PB,∵RT△BPG中,AG=PB.∴AG=AB.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△CDE≌△BCF是解题的关键.9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)【分析】法(1)先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD;法(2)先作∠BAC的平分线交BM于N,得出∠ABN=∠CAE,再根据∠BAN=∠C=45°,AB=AC,证出△BAN≌△ACD,得出AN=CD,证出△NAM≌△DCM,即可得出∠AMB=∠CMD.【解答】证明:法(1)如图,延长AD至F,使得CF⊥AC,∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,又∵AB=AC,CF⊥AC,∴△ABM≌△CAF,∴∠BMA=∠F,AM=CF,∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,∴△FCD≌△MCD,∴∠AMB=∠F=∠CMD;法(2)AD交BM于E,作∠BAC的平分线交BM于N,∵AE⊥BM,BA⊥AC,∴∠ABN=∠CAE,∵∠BAN=∠C=45°,AB=AC,∴△BAN≌△ACD.∴AN=CD,∵∠NAM=∠C=45°,AM=MC∴△NAM≌△DCM,∴∠AMB=∠CMD.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和相似三角形的判断与性质进行解答即可.10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.【分析】方法一:连AC,取其中点为M,连EM和FM,根据三角形的中位线平行于第三边并且等于第三边的一半可得EM∥AD,2EM=AD,同理FM∥BC,2FM=BC,再根据两直线平行,内错角相等可得∠AHF=∠MEF,两直线平行,内错角相等可得∠BGF=∠MFE,从而得证;方法二:作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP,根据独角戏互相平分的四边形的平行四边形可得APBC是平行四边形,根据平行四边形对边相等可得AP=BC=AD,连结AP,根据等边对等角可得∠APD=∠ADP,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥DP根据两直线平行,同位角相等可得∠AHF=∠ADP,根据两边互相平行的两个角相等或互补可得∠BGF=∠APD,然后等量代换即可得证.【解答】答:∠AHF=∠BGF.证明:方法一:连AC,取其中点为M,连EM和FM,∵EM是△ACD的中位线,∴EM∥AD,2EM=AD,同理FM∥BC,2FM=BC,∴EM=FM,∴∠MEF=∠MFE,∵∠AHF=∠MEF,∠BGF=∠MFE,∴∠AHF=∠BGF;方法二:作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP,∵F是AB的中点,∴APBC是平行四边形,∴AP=BC=AD,连结AP,则∠APD=∠ADP,∵EF是△CDP的中位线,∴EF∥DP,∴∠AHF=∠ADP,∵GF∥DP,GB∥AP,∴∠BGF=∠APD,∴∠AHF=∠BGF.【点评】本题考查了三角形的中位线定理,等腰三角形的判定与性质,难点在于作辅助线构造出三角形的中位线.11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.(1)求证:PN=QN;(2)求证:MN⊥BC.【分析】(1)要证明PN=QN,只有证明这两条线段所在的三角形全等就可以了,连接DN,利用斜边直角边对应相等的两个三角形全等就可以了.(2)△BPM和△CQM是直角三角形,由条件知道MB=CM,取BM、CM的中点S、T,连接PS、QT可以得到PS=QT,利用角的关系证明∠SPN=∠TQN,再证明△SPN≌△TQN,从而得到NS=NT,利用等腰三角形的三线合一的性质证明MN⊥BC.【解答】证明:(1)方法一:连接DN∵D为△ABC中线AM的中点∴AD=MD,MB=CM∵MP⊥AB,MQ⊥AC∴∠APM=∠AQM=90°∴△APM、△AMQ是直角三角形∴PD=AM,QD=AM∴PD=QD∴Rt△DPN≌Rt△DQN(HL)∴NP=PQ;方法二:∵MP⊥AB,MQ⊥AC∴∠APM=∠AQM=90°,所以∠APM+∠AQM=180°,所以四边形APMQ为圆内接四边形.∵D为AM的中点,∴PD,DQ为以D为圆心的四边形APMQ内接圆的半径.∵PN⊥PD,QN⊥QD,∴PN,NQ为圆的两条切线,∴PN=NQ.(2)取BM、CM的中点S、T,连接SP、SN、TQ、TN∴SP=BM=MC=TQ∴∠SPN=90°﹣∠BPS﹣∠NPM=90°﹣∠B﹣∠DPA=90°﹣∠B﹣∠BAM=90°﹣∠AMC=90°﹣∠DMQ﹣∠QMT=90°﹣∠DQM﹣∠MQT=∠TQN∴△SPN≌△TQN∴SN=TN∵SM=TM∴NM⊥BC【点评】本题考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质.12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.【分析】①要证△DEM≌△DFN,由D、M、N分别是AB、AP、BP的中点,所以DM=BP,DN=AP,再有过E、F分别作CA、CB的垂线相交于P,所以EM=AP=DN,FN=BP=DM.又DE=DF所以△DEM≌△DFN.②由①得∠EMD=∠FND,由∠AMD=∠BND=∠APB所以∠AME=∠BNF,那么∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF),即∠PAE=∠PBF.【解答】证明:①如图,在△ABP中,∵D、M、N分别是AB、AP、BP的中点,∴DM=BP,DN=AP,又∵PE⊥AE,BF⊥PF∴EM=AP=DN,FN=BP=DM,∵DE=DF∴△DEM≌△DFN(SSS);②∵由①结论△DEM≌△DFN可知∠EMD=∠FND,∵DM∥BP,DN∥AP,∴∠AMD=∠BND=∠APB,∴∠AME=∠BNF又∵PE⊥AE,BF⊥PF,∴△AEP和△BFP都为直角三角形,又M,N分别为斜边PA与PB的中点,∴AM=EM=AP,BN=NF=BP,∴∠MAE=∠MEA,∠NBF=∠NFB,∴∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF).即∠PAE=∠PBF,【点评】此题考查了线段之间的关系,和全等三角形的判定和性质,同学们应该熟练掌握.13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.【分析】在AD上截取AF=AB,连接EF,根据SAS证△BAE≌△FAE,推出∠B=∠EFA,求出∠C=∠EFD,证△CDE≌△FDE,推出DC=DF,即可得出答案.【解答】答:AD=AB+DC,证明:在AD上截取AF=AB,连接EF,∵AE平分∠BAF,∴∠BAE=∠FAE,∵在△BAE和△FAE中∴△BAE≌△FAE(SAS),∴∠B=∠EFA,∵AB∥DC,∴∠B+∠C=180°,∵∠EFD+∠EFA=180°,∴∠C=∠EFD,∵DE平分∠CDA,∴∠CDE=∠FDE,∵在△CDE和△FDE中∴△CDE≌△FDE(AAS),∴DC=DF,∴AD=AF+DF=AB+DC.【点评】本题考查了全等三角形的性质和判定,平行线的性质,角平分线定义等知识点的应用,关键是能正确作辅助线.14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.【分析】连接DE、DF,根据三角形中位线定理及等边三角形的性质,可证明△DEG≌△DFH,即可得结论.【解答】证明:连接DE、DF,(如图)∵D、E、F是各边中点,∴DE平行且等于AC,DF平行且等于BC,∵AB=BC=CA,∴∠A=∠B=∠C=60°,∴DE=DF,∠EDF=∠DFA=∠C=60°∵已知等边△DHG,∴DG=DH,∠HDG=60°=∠EDF,∴∠EDF﹣∠FDG=∠HDG﹣∠FDG,即∠1=∠2,∴△DEG≌△DFH(SAS),∴FH=EG.【点评】本题考查了三角形全等的判定及性质,涉及到三角形中位线定理、等边三角形的性质等知识点,熟练掌握三角形全等判定方法是解题的关键.15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC.【分析】根据角平分线性质作辅助线连接FE,进而证得HCEF是菱形从而证得.【解答】证明:连接FE,∵CD是Rt△ABC斜边上的高,∴∠A=∠DCB,又∵AE平分∠A,CF平分∠BCD,∴∠DCF=∠DAE,又∵∠AHD=∠CHE,∠ADH=90度,∴∠CGE=90度,在三角形ACF中,AE是高,中线,角平分线,∴CF⊥HE,CG=FG,∴CH=FH,CE=EF,∴CF是△CHE的高,中线,角平分线,∴CH=CE,∴CH=HF=EF=CE,∴四边形HCEF是菱形,∴HF∥BC.【点评】本题考查了角平分线性质以及其应用,问题有一定难度.16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)试猜想∠MPB与∠FCM数量关系并证明.【分析】(1)连接MD,根据线段垂直平分线上的点到两端点的距离相等可得MD=MC,然后利用“边边边”证M明△MFC与△MAD全等,根据全等三角形对应角相等可得∠MAD=∠MFC,根据两直线平行,同旁内角互补求出∠BAD,然后求出∠BAM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明;(2)根据全等三角形对应角相等和轴对称的性质可得∠BMP=∠FMD=∠DMA,然后用∠BMP表示出∠FCM,再根据直角三角形两锐角互余列式整理即可得解.【解答】(1)证明:连接MD,∵点E是CD的中点,ME⊥D,∴MD=MC,在△MFC与△MAD中,,∴△MFC≌△MAD(SSS),∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=180°﹣∠ABC=180°﹣90°=90°,∴∠BAM=∠MAD﹣∠BAD=120°﹣90°=30°,∵∠ABM=90°,∴AM=2MB;(2)解:2∠MPB+∠FCM=180°.理由如下:由(1)可知∠BMP=∠FMD=∠DMA,∵∠FCM=∠ADM=∠DMC=2∠BMP,∴∠BMP=∠FCM,∵∠ABC=90°,∴∠MPB+∠BMP=90°,∴∠MPB+∠FCM=90°,∴2∠MPB+∠FCM=180°.【点评】本题考查了全等三角形的判定与性质,线段垂直平分线上的点到两端点的距离相等的性质,直角三角形两锐角互余,熟记各性质并作辅助线构造出全等三角形是解题的关键.17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【分析】作∠OBF=∠OAE交AD于F,由已知条件用“ASA”可判定△AOE≌△BOF,所以AE=BF,再有条件AE=BD得BF=BD,所以∠BDF=∠BFD,再利用三角形的外角关系证得∠BOF=∠C,又因为∠BOF=∠BAD+∠ABE=2∠BAD,所以:∠BAD=∠C.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,【点评】本题考查了全等三角形的判断和性质,常用的判断方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.在证明中还要注意图形中隐藏条件的挖掘如:本题中的对顶角∠AOE=∠BOF.18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.【分析】先证△ACF与△ECB全等,得到∠AFC=∠ABE,再证△FMC≌△BNC得到MC=MN,有条件MG垂直于NC而得到结论.【解答】证明:∵△ACE,△BCF都是等边三角形,∴AC=EC,FC=BC,∠ACE=∠BCF=60°,∴∠ECN=60°,∠BCE=∠ACF,∴△ACF≌△ECB,∴∠AFC=∠ABE,∵∠FCM=∠BCN=60°,CF=CB,∴△FMC≌△BNC,∴CM=CN,∵∠ECN=60°,∴△CNMN是等边三角形,∴CM=MN,∵MG⊥NC,∴GC=GN.【点评】本题考查了等边三角形的性质,通过两次全等得到MC=MN,通过MG垂直于NC得到结论.19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.【分析】根据等边对等角可得∠E=∠BDE,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ABC=2∠BDE,从而求出∠C=∠BDE,再求出∠C=∠CDF,然后根据等角对等边求出DF=FC,再根据等角的余角相等求出∠CAD=∠ADF,根据等角对等边求出DF=AF,即可得到AF=FC.【解答】解:AF=FC.理由如下:∵BE=BD,∴∠E=∠BDE,∵∠ABC=∠E+∠BDE=2∠BDE,∠ABC=2∠C,∴∠C=∠BDE,又∵∠BDE=∠CDF,∴∠C=∠CDF,∴DF=FC,∵AD为BC边上的高,∴∠CDF+∠ADF=∠ADC=90°,∠C+∠CAD=180°﹣90°=90°,∴∠CAD=∠ADF,∴DF=AF,∴AF=FC.【点评】本题考查了等腰三角形的判定与性质,等角的余角相等的性质,熟记性质与判定并准确识图是解题的关键.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.【分析】可在AC延长线上截取CM1=BM,得Rt△BDM≌Rt△CDM1,得出边角关系,再求解△MDN≌△M1DN,得MN=NM1,再通过线段之间的转化即可得出结论.【解答】证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在△BDM和△CDM1中,,∴△BDM≌△CDM1(SAS),得MD=M1D,∠MDB=∠M1DC,∴∠MDM1=120°﹣∠MDB+∠M1DC=120°,∴∠NDM1=60°,在△MDN和△M1DN中,∵,∴△MDN≌△M1DN(SAS),∴MN=NM1,故△AMN的周长=AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.【点评】本题主要考查了全等三角形的判定及性质问题,能够通过线段之间的转化进而求解一些简单的结论.21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.【分析】可在AB上截取AF=AD,可得△ACF≌△ACD,得出∠AFC=∠D,再由线段之间的关系AE=(AB+AD)得出BC=CF,进而通过角之间的转化即可得出结论.【解答】证明:在AB上截取AF=AD,连接CF,∵AC平分∠BAD,∴∠BAC=∠CAD,又AC=AC,∴△ACF≌△ACD(SAS),∴AF=AD,∠AFC=∠D,∵AE=(AB+AD),∴EF=BE,又∵CE⊥AB,∴BC=FC,∴∠CFB=∠B,∴∠B+D=∠CFB+∠AFC=180°,即∠B与∠D互补.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练运用三角形的性质求解一些简单的计算、证明问题.22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.【分析】延长CE、BA交于F,根据角边角定理,证明△BEF≌△BEC,进而得到CF=2CE的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF≌△ABD,得到BD=CF,至此问题得解.【解答】证明:如图,延长CE、BA交于F.∵CE⊥BD,∴∠BEF=∠BEC=90°,∴∠1=∠2,在△BEF和△BEC中,∴△BEF≌△BEC(ASA),∴EF=EC,∴CF=2CE,∵∠BAC=90°,∴∠FAC=90°=∠BAC∵CE⊥BD,∴∠ACF=∠1,在△ACF和△ABD中,∴△ACF≌△ABD(ASA),∴BD=CF,∴BD=2CE.【点评】本题考查全等三角形的判定与性质.解决本题主要是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决.23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.(1)求证:CE=BF;(2)探索线段CE与AB+AC之间的数量关系,并证明.【分析】(1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;(2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【解答】(1)证明:延长CA交FM的平行线BG于G点,∠G=∠CAD、∠GBA=∠BAD∵AD平分∠BAC,∴∠BAD=∠CAD,∴AG=AB,∵FM∥AD∴∠F=∠BAD、∠FEA=∠DAC∵∠BAD=∠DAC,∴∠F=∠FEA,∴EA=FA,∴GE=BF,∴M为BC边的中点,∴BM=CM,∵EM∥GB,∴CE=GE,∴CE=BF;(2)AB+AC=2EC.证明:∵EA=FA、CE=BF,∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【点评】本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.【分析】猜想:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,易证BD=CD,即可证明△ABD≌△MCD,可得AB=MC,∠BAD=∠M,即可求得∠EAF=∠MCA,即可证明△AEF≌△CMA,可得EF=AM,∠CAM=∠F,即可解题.【解答】解:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,∴AD=DM,AM=2AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△MCD,(SAS)∴AB=MC,∠BAD=∠M,∵AB=AE,∴AE=MC,∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,∵∠FAC+∠BAC+∠EAB+∠EAF=360°,∴∠BAC+∠EAF=180°,∵∠CAD+∠M+∠MCA=180°,∴∠CAD+∠BAD+∠MCA=180°,即∠BAC+∠MCA=180°,∴∠EAF=∠MCA.在△AEF和△CMA中,,∴△AEF≌△CMA,∴EF=AM,∠CAM=∠F,∴EF=2AD;∵∠CAF=90°,∴∠CAM+∠FAN=90°,∵∠CAM=∠F,∴∠F+∠FAN=90°,∴∠ANF=90°,∴EF⊥AD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△MCD和△AEF≌△CMA是解题的关键.25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=DC=10,求AC的长.【分析】作辅助线构建直角三角形,求证△CFD≌△CEB,即可得DF=EB,即可求得DF,根据DF求CF,根据CF、AF求AC.【解答】解:过C作CE⊥AB,CF⊥AD,∴∠CEA=90°,∠CFD=90°,∵AC平分∠BAD,∴CF=CE(角平分线上的点到角的两边的距离相等),又∵BC=DC,∴△CFD≌△CEB(HL),∴DF=EB,同理可得△ACF≌△ACE,∴AF=AE,∴AD+DF=AB﹣BE,即9+DF=21﹣BE,解得DF=BE=6,由勾股定理得,AC====17.答:AC长为17.【点评】本题考查了全等三角形的证明,考查了勾股定理在直角三角形中的应用,本题中构建直角△CFD是解题的关键.26.如图,已知线段AB的同侧有两点C、D满足∠ACB=∠ADB=60°,∠ABD=90°﹣∠DBC.求证:AC=AD.【分析】以AB为轴作△ABC的对称△ABC′,则AC=AC′,∠C=∠C′=60°,∠ABC′=∠ABC,再证明D、B、C′共线,根据△ADC′是等边三角形,即可证明;【解答】证明:以AB为轴作△ABC的对称△ABC′,如图:则AC=AC′,∠C=∠C′=60°,∠ABC′=∠ABC,因为∠ABD=90°﹣∠DBC所以2∠ABD+∠DBC=180°所以∠ABD+∠DBC+∠ABD=180°即∠ABC+∠ABD=180°所以∠ABC′+∠ABD=180°所以D、B、C′共线又因为∠D=60°所以∠DAC=180°﹣∠C′﹣∠D=60°=∠D=∠C′所以△ADC′是等边三角形,所以AD=AC′=AC.【点评】本题考查了等边三角形的判定与性质,难度一般,关键是以AB为轴作△ABC的对称△ABC′.27.如图,正方形ABDE和ACFG是以△ABC的AB、AC为边的正方形,P、Q为它们的中心,M是BC的中点,试判断MP、MQ在数量和位置是有什么关系?并证明你的结论.【分析】取AB和AC的中点分别为H和K,连接PH、PM、HM、QK、KM、QM,由正方形的性质可知三角形APB与三角形ACQ都为等腰直角三角形,根据直角三角形斜边上的中线等于斜边的一半得到PH等于AB的一半,QK等于AC的一半,然后由MH和MK都为三角形ABC的中位线,根据中位线定理得到HM等于AC的一半,MK等于AB的一半,等量代换得到PH=MK,HM=QK,然后由中位线定理得到MH与AC平行,MK与AB平行,根据两直线平行同位角相等,再等量代换得到∠BHM=∠CKM,两边都加上直角,得到∠PHM=∠MKQ,利用SAS即可得到三角形PMH与三角形KQM全等,根据全等三角形的对应边相等得到PM=QM;由全等得到∠MPH=∠QMK,再由MK与AB平行,得到同位角相等,由PH与AB垂直得到一对锐角互余,等量代换得到∠PMK与∠KMQ互余,即∠PMQ为直角,从而得到PM与QM垂直.【解答】解:MP、MQ之间的关系是MP=MQ,MP⊥MQ,证明:取AB得中点H,AC的中点K,连接PH,HM,PM,QK,KM,MQ,∵P和Q分别为两正方形的中心,∴△APB与△AQC都为等腰直角三角形,∴QK=AC,PH=AB(直角三角形斜边上的中线等于斜边的一半),又HM与KM都为△ABC的中位线,∴HM=AC,MK=AB,∴QK=HM,MK=PH,∴HM∥AC,MK∥AB,∴∠BHM=∠BAC,∠CKM=∠BAC,∴∠BHM=∠CKM,又PH⊥AB,QK⊥AC(等腰三角形的三线合一),∴∠PHB=∠QKC=90°,∴∠BHM+∠PHB=∠CKM+∠QKC,即∠MHP=∠QKM,∴△MHP≌△QKM(SAS),∴PM=QM;设PM与AB交于点O,∵△MHP≌△QKM,∴∠HPM=∠KMQ,∵KM∥AB,∴∠AOP=∠PMO,∵∠PHB=90°,∴∠HPO+∠POH=90°,∴∠PMK+∠KMQ=90°,即∠PMQ=90°,∴PM⊥QM.【点评】本题主要考查了正方形的性质,矩形的性质和判定,三角形的中位线定理,梯形的中位线定理等知识点,综合运用性质进行证明是解此题的关键.28.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.【分析】先延长BP,交AC于E,根据已知条件、结合ASA易证△ABP≌△AEP,从而有BP=PE,AE=AB,∠AEB=∠ABE,易求BE=4,AE=5,那么CE=4,于是可知△BCE是等腰三角形,那么∠EBC=∠C,结合三角形外角性质可证∠ABE=2∠C,也就易得∠BAC=3∠C.【解答】证明:延长BP,交AC于E,∵AD平分∠BAC,BP⊥AD,∴∠BAP=∠EAP,∠APB=∠APE,又∵AP=AP,∴△ABP≌△AEP,∴BP=PE,AE=AB,∠AEB=∠ABE,∴BE=BP+PE=4,AE=AB=5,∴CE=AC﹣AE=9﹣5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠C,又∵∠ABE=∠AEB=∠C+∠EBC,∴∠ABE=2∠C,∴∠ABC=∠ABE+∠EBC=3∠C.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质、三角形外角的性质.关键是作辅助线,求证△BCE是等腰三角形.29.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.【分析】可过A作AB的垂线,在其上截取AK=CN=MB,连KM,KC,得△KAM≌△MBC,进而由题中条件得出△KMC为等腰直角三角形,再证△AKC≌△CAN,得出∠KCA=∠NAC,即KC∥AN,进而可将∠APM转化为∠KCM求解.【解答】解:如图,过A作AB的垂线,在其上截取AK=CN=MB,连KM,KC,则因为AM=BC,AK=BM,∠KAM=∠B=90°,所以△KAM≌△MBC,所以KM=CM,∠AMK=∠MCB因为∠CMB+∠MCB=90°,所以∠CMB+∠AMK=90°所以∠KMC=90°所以△KMC为等腰直角三角形,∠MCK=45°又因为∠KAM=∠B=90°,AK=CN,所以AK∥CN,所以四边形ANCK是平行四边形,所以KC∥AN,所以∠APM=∠KCM=45°.【点评】本题主要考查了全等三角形的判定及性质以及等腰直角三角形的性质等问题,能够通过作辅助线在图形之间建立联系,进而辅助解题.30.已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,(1)求:∠AOC的度数;(2)求证:AC=AE+CD.【分析】(1)根据三角形的内角和定理求出∠BAC+∠ACB,再根据角平分线的定义求出∠OAC+∠OCA,然后在△AOC中,利用三角形的内角和定理列式计算即可得解;(2)在AC上截取AF=AE,利用“边角边”证明△AOE和△AOF全等,根据全等三角形对应角相等可得∠AOF=∠AOE,根据邻补角的定义求出∠AOE=60°,再求出∠COF=60°,然后求出∠COD=∠COF,然后利用“角边角”证明△COD和△COF全等,根据全等三角形对应边相等可得CF=CD,再根据AC=AF+CF整理即可得证.【解答】(1)解:∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE是△ABC的角平分线,∴∠OAC+∠OCA=(∠BAC+∠ACB)=×120°=60°,在△AOC中,∠AOC=180°﹣(∠OAC+∠OCA)=180°﹣60°=120°;(2)证明:如图,在AC上截取AF=AE,∵AD是△ABC的角平分线,∴∠OAE=∠OAF,在△AOE和△AOF中,,∴△AOE≌△AOF(SAS),∴∠AOF=∠AOE,∵∠AOE=180°﹣∠AOC=180°﹣120°=60°,∴∠AOF=60°,∵∠COF=∠AOC﹣∠AOF=120°﹣60°=60°,∠COD=∠AOE=60°,∴∠COD=∠COF,∵CE是△ABC的平分线,∴∠OCD=∠OCF,在△COD和△COF中,,∴△COD≌△COF(ASA),∴CF=CD,∵AC=AF+CF,∴AC=AE+CD.【点评】本题考查了全等三角形的判定与性质,三角形的内角和定理,角平分线的定义,(1)整体思想的利用是解题的关键,(2)作辅助线并根据角的度数是60°得到相等的角是解题的关键.31.如图,已知△ABC中AB>AC,P是角平分线AD上任一点,求证:AB﹣AC>PB﹣PC.【分析】首先作辅助线,在AB上取一点E,使AE=AC,连接PE.根据边角边定理判断△AEP≌△ACP,得到PE=PC.根据AE=AC(辅助线)与BE=AB﹣AE得到BE=AB﹣AC.在△PBE中,根据三角形中两边之差小于第三边,得到BE>PB﹣PE,即BE>PB﹣PC,将BE用AB﹣AE代入,即可证明.【解答】证明:在AB上取一点E,使AE=AC,连接PE∵AP为∠BAC的平分线,∴∠EAP=∠CAP,在△AEP和△ACP中,,∴△AEP≌△ACP(SAS)∴PE=PC∵AE=AC∴BE=AB﹣AE=AB﹣AC在△PBE中,∵BE>PB﹣PE∴AB﹣AC>PB﹣PC【点评】本题考查全等三角形的性质与判定、三角形三边的关系.解决本题的关键是恰当添加辅助线,将AB、AC、PB、PC间的关系转化为三角形内边间的关系.32.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.【分析】取OB中点M,OC中点N,根据三角形中位线定理可得到DM∥OC,DM=OC,DN∥OB,DN=OB,再根据直角三角形斜边上的中线的性质得到QM=OB,PN=OC,再根据三角形外角的性质即可推出∠QMD=∠PND,从而利用SAS判定△QMD≌△DNP,根据全等三角形的对应的边相等即可证得结论.【解答】证明:如图,取OB中点M,OC中点N,连接MD,MQ,DN,PN.∵D为BC的中点∴DM∥OC,DM=OC,DN∥OB,DN=OB.∵在Rt△BOQ和Rt△OCP中,QM=OB,PN=OC.∴DM=PN,QM=DN.∠QMD=∠QMO+∠OMD=2∠ABO+∠FOB,∠PND=∠PNO+∠OND=2∠ACO+∠EOC.∵∠ABO=∠ACO,∠FOB=∠EOC,∴∠QMD=∠PND.∴△QMD≌△DNP,∴DQ=DP.【点评】此题主要考查学生对三角形中位线定理及全等三角形的判定与性质的综合运用能力.33.如图已知△ABC中,AB=AC,∠ABD=60°,且∠ADB=90°﹣∠BDC,求证:AB=BD+DC.【分析】延长BD至E,使DE=DC,连接CE,AE,得出∠DCE=∠DEC=∠BDC,由∠ADE=360°﹣∠ADB﹣∠BDC﹣∠CDE,证出∠ADE=∠ADC,推出△ADC≌△ADE,得到AC=AE=AB,根据等边三角形的判定和性质推出AB=BE,即可推出答案.【解答】证明:延长BD至E,使DE=DC,连接CE,AE,∴∠DCE=∠DEC=∠BDC,∴∠ADE=360°﹣∠ADB﹣∠BDC﹣∠CDE=360°﹣(90°﹣∠BDC)﹣∠BDC﹣(180°﹣∠BDC)=90°+∠BDC,∵∠ADC=∠ADB+∠BDC=90°﹣∠BDC+∠BDC,∴∠ADE=∠ADC,∵AD=AD,∴△ADC≌△ADE,∴AC=AE=AB,由于∠ABD=60°,∴△ABE为等边三角形,∴AB=BE=BD+DE=BD+CD,即:AB=BD+DC.【点评】本题主要考查对等边三角形的性质和判定,等腰三角形的性质和判定,全等三角形的性质和判定,四边形的内角和定理等知识点的理解和掌握,正确作辅助线并利用性质进行推理是解此题的关键.34.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE度数.【分析】如图,连接BD、AE,易证△DAB≌△BCF(SAS),得BD=BF,∠BDF=∠BFD,又∵AD∥CF,∠ADF=∠CFD,所以∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,同理可得,∠BAF=∠AFC+2∠CFE,又由∠AFB=51°,则∠ABF+∠BAF=129°,所以,∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,解得∠DFE=39°.【解答】证明:如图,连接BD、AE,∵DA⊥AB,FC⊥AB,∴AD∥CF,∠DAB=∠BCF=90°,又∵DA=BC,FC=AB,∴△DAB≌△BCF(SAS),∴BD=BF,∴∠BDF=∠BFD,又∵AD∥CF,∴∠ADF=∠CFD,∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,同理可得,∠BAF=∠AFC+2∠CFE,又∵∠AFB=51°,∴∠ABF+∠BAF=129°,∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,∴∠DFE=39°.答:∠DFE度数是39°.【点评】本题主要考查了等腰三角形性质和全等三角形的判定与性质,全等三角形的判定是证明线段和角相等的重要方法,作好辅助线是解答本题的关键.35.如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点E在射线NA上,且NE=2NA,求证:BD⊥DE.【分析】取AD中点F,连接EF,证△BCM≌△ACN,△EAF≌△ANC,△AFE≌△DFE,推出∠EDA=∠EAD,∠ADM=∠CBM=∠NAC,求出∠EDB=∠EDA+∠BDA=∠EAD+∠NAC=180°﹣∠DAM,即可得出答案.【解答】证明:取AD中点F,连接EF,∵△ABC是等腰直角三角形,点M、N分别是边AC和BC的中点,∴BC=AC,AC=2CM,BC=2CN,∴CM=CN,在△BCM和△ACN中,,∴△BCM≌△ACN(SAS),∴AN=BM,∠CBM=∠CAN,∵NE=2AN,∴AE=AN,∵AD∥BC,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,在△EAF和△ANC中,,∴△EAF≌△ANC(SAS),∴∠NAC=∠AEF,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F为AD中点,∴AF=DF,在△AFE和△DFE中,,∴△AFE≌△DFE(SAS),∴∠EAD=∠EDA=∠ANC,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°﹣∠DAM=180°﹣90°=90°,∴BD⊥DE.【点评】本题考查了全等三角形的性质和判定的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.36.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.【分析】(1)在边BC上截取BE=AB,可证明△ABD≌△DBE,则AD=DE,再证明出∠C=∠CDE,则DE=CE,从而得出BC=BA+AD;(2)以BC为边作等边三角形A'BC,在A'C上截取CD'=BD,然后证明△ABD≌△ACD',从而有AD=AD',然后再证明∠D'A'A=∠A'AD'=30°,从而A'D'=AD',所以BC=A'C=A'D'+CD'=AD+BD.【解答】证明:(1)在边BC上截取BE=AB,连接DE,∵BD为∠ABC的平分线,∴∠ABD=∠DBE,∴△ABD≌△DBE,∴AD=DE,∴∠A=∠BED,∵∠A=100°,∴∠BED=100°,∵∠C=50°,∴∠CDE=50°,∴∠C=∠CDE,∴DE=CE,∵BC=BE+CE,∴BC=BA+AD;(2)如图,以BC为边作等边三角形A'BC,在A'C上截取CD'=BD,∴∠ACA′=∠ABD=20°,∵AB=AC,∴△ABD≌△ACD'(SAS),∴AD=AD',∠BAC=∠CAD′=100°,∴∠AD′C=60°,连接AA′,∴∠D'A'A=∠A'AD'=30°,∴A'D'=AD',∴BC=A'C=A'D'+CD'=AD+BD,即BC=BD+AD.【点评】本题主要考查了全等三角形的判定与性质和等腰三角形的性质,证明三角形全等是证明边或角相等的重要方法,本题作辅助线构建等边三角形是关键.37.如图,△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD.求证:BD=CD.【分析】可过C作CE⊥AD于E,过D作DE⊥BC于F,依据题意可得∠FCD=∠ECD,由角平分线到角两边的距离相等可得DF=DE,进而的△CED≌△CFD,由对应边又可得Rt△CDF≌Rt△BDF,进而可得出结论.【解答】证明:如图,过C作CE⊥AD于E,过D作DF⊥BC于F.∵∠CAD=30°,∴∠ACE=60°,且CE=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠FCD=90°﹣∠ACD=15°,∠ECD=∠ACD﹣∠ACE=15°,在△CED和△CFD中,∴△CED≌△CFD,∴CF=CE=AC=BC,∴CF=BF.∴Rt△CDF≌Rt△BDF,∴BD=CD.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的性质问题,能够熟练运用其性质进行解题.38.如图所示,在△ABF中,已知BC=CE=EF,∠BAC=∠CAD=∠DAE=45°,求的值.【分析】延长AC到M,使MC=AC;延长AE到N,使NE=AE;连接ME、NF,延长AD交ME于点P,利用“边角边”证明△ABC和△MEC全等,根据全等三角形对应角相等可得∠EMC=∠BAC=45°,再根据∠CAD=45°推出∠APM=90°,然后得到AE=AM,同理可以证明△ACE和△NFE全等,根据全等三角形对应边相等可得AC=NF,∠N=∠CAE=90°,然后利用勾股定理列式求出AF、AC的关系,整理即可得解.【解答】解:延长AC到M,使MC=AC;延长AE到N,使NE=AE,连接ME、NF,延长AD交ME于点P,在△ABC和△MEC中,,∴△ABC≌△MEC(SAS),∴∠BAC=∠EMC=45°,又∵∠BAC=∠CAD=∠DAE=45°,∴∠APM=90°,∴AE=AM=2AC,同理△ACE≌△NFE,∴AC=NF,AE=NE=2AC,∠N=∠CAD+∠DAE=90°,在Rt△ANF中,AF===AC,所以=.【点评】本题考查了全等三角的判定与性质,三角形的中线,勾股定理,“见中线,加倍延”是此类题目常用的辅助线的作法,所以我们直接将AC、AE加倍延长,构造出全等三角形是解题的关键.39.如图,已知过△ABC的顶点A,在∠BAC内部任意作一条射线,过B、C分别作此射线的垂线段BD、CE,M为BC边中点.求证:MD=ME.【分析】延长DM交CE于N,通过证明△DBM≌△NCM(ASA)得出DM=MN,再根据直角三角形的性质即可得出结论.【解答】证明:延长DM交CE于N(如图)∵BD⊥AD,CE⊥AD,∴BD∥CE,∴∠1=∠2,又∵BM=CM,∠BMD=∠CMN,∴△DBM≌△NCM(ASA),∴DM=MN,∴M是DN中点又∵∠DEN=90°,∴DM=EM=MN=DN,即MD=ME.【点评】本题考查了全等三角形的判定和性质和直角三角形的性质:在应用全等三角形的判定时,必要时添加适当辅助线构造三角形;在直角三角形中,斜边上的中线等于斜边的一半.本题关键是添加辅助线找到中间线段MN.40.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E求证:.【分析】过B作BM∥AC交DE的延长线于M,由AF平分∠BAC,DH⊥AF证△AEH和△AGH全等,推出∠AEH和∠AGH相等,进一步推出∠BEM和∠M相等,得到BM=BE,根据三角形的中位线得到OG=BM,即可得到答案.【解答】证明:过B作BM∥AC交DE的延长线于M,∵AF平分∠BAC,DH⊥AF,∴∠EAH=∠GAH,∠AHE=∠AHG=90°,∵AH=AH,∴△AEH≌△AGH,∴∠AEH=∠AGH,∵BM∥AC,∴∠M=∠AGH,∵∠AEH=∠BEM,∴∠BEM=∠M,∴BM=BE,∵正方形ABCD,∴OB=OD,∵BM∥AC,∴DG=MG,∴OG=BM=BE,即:OG=BE.【点评】本题主要考查了正方形的性质,三角形的中位线,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,解此题的关键是正确作辅助线BM,证出BM=BE.题型较好,比较典型,综合性强.41.已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.【分析】可过A、D分别做BC的垂线,设AG的长为1,得出与之相关联的线段的长度,进而利用角正切值相等得出∠DBH=∠FDH,即可得出结论.【解答】证明:过A、D分别做BC的垂线,垂足分别为G、H.设AG=1,那么CG=1,DH=,BH=,tan∠DBH=,又∠GAF=∠DBH,∴GF=AG=,FH=GH﹣GF=﹣=,tan∠FDH==∴∠DBH=∠FDH∵∠ADB=∠DBH+∠C,∠CDF=∠FDH+∠CDH,∴∠ADB=∠CDF.【点评】本题主要考查了等腰三角形的性质以及由正切值判定两个角相等,无论是证明还是计算题,都应该从不同角度思考,利用已学知识熟练求解.42.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.【分析】取AC的中点F,连接BF,根据中点的性质可得到AE=AF,再根据SAS判定△ABF≌△ACE,由全等三角形的对应边相等可得到BF=CE,再利用三角形中位线定理得到DC=2BF,即证得了DC=2CE.【解答】证明:取AC的中点F,连接BF,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∵∠A=∠A,AB=AC,∴△ABF≌△ACE(SAS),∴BF=CE,∵BD=AB,AF=CF,∴DC=2BF,∴DC=2CE.【点评】此题主要考查等腰三角形的性质及三角形中位线定理的综合运用.43.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.求证:DE=CF.【分析】先证△BED和△CMD全等,推出ED=MD=,再证△AEH和△AFH全等,得到AE=AF,由已知AC=AM,两式相减即可得到EM=CF,进一步推出答案.【解答】证明:∵△BED和△CMD中∴△BED≌△CMD,∴ED=MD=,又AG平分∠DAC,∴∠DAG=∠CAG,∵BF⊥AG,∴∠AHE=∠AHF=90°,在△AEH和△AFH中∴△AEH≌△AFH,∴AE=AF,又∵AC=AM,∴AC﹣AF=AM﹣AE,∴EM=CF,∴DE=CF.【点评】本题考查了全等三角形的性质和判定,三角形的角平分线和高等知识点,解此题的关键是证出EM=CF.题型较好,综合性强.44.如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF的延长线上且BP=AC,CQ=AB,(1)求证:△ABP≌△QCA.(2)AP和AQ的位置关系如何,请给予证明.【分析】(1)由于∠AEB=90°,∠AFC=90°,可得∠ABE=∠ACQ,进而利用SAS得证△ABP≌△QCA.(2)由(1)中的全等得∠BAP=∠Q,又有CF⊥AB,通过角之间的转化即可得出结论.【解答】证明:(1)∵BE、CF是△ABC的高,即∠AEB=90°,∠AFC=90°,∴∠ABP+∠BAE=90°,∠ACQ+∠BAE=90°,∴∠ABE=∠ACQ,在△ABP与△QCA中,∵,∴△ABP≌△QCA.(2)PA⊥AQ.证明:由△ABP≌△QCA得∠BAP=∠Q,∵∠Q+∠BAQ=90°,∴∠BAP+∠BAQ=90°,即∠PAQ=90°,∴PA⊥AQ.【点评】本题主要考查了全等三角形的判定及性质,应熟练掌握.45.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,说明BG=CF的理由.【分析】过E作FH⊥AB于H,利用AAS判定Rt△CEG≌Rt△FHB,从而得到CG=FB,即CF=GB.【解答】解:过F作FH⊥AB于H,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC(角平分线上的点到角两边的距离相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论