光纤通信技术论文_第1页
光纤通信技术论文_第2页
光纤通信技术论文_第3页
光纤通信技术论文_第4页
光纤通信技术论文_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

word文档可自由复制编辑光纤通信技术论文班级:信息学号:姓名:XXX指导老师:成绩:word文档可自由复制编辑word文档可自由复制编辑目录前言 1一、 光纤通信概念 2二、 光纤通信的介绍 2三、 光纤通信发展的历史 3四、 光纤通信发展的现状 4五、 光纤通信的优点 4六、 光纤通信的发展趁势 56.1波分复用技术 56.2相干光通信 56.3超大波长光纤通信 66.4光集成技术 66.5光弧子通信 6七、 光纤的介绍 67.1光纤概念 67.2光纤传输原理分析 77.3光纤的传输特性 77.4光纤的型号介绍 9八、 光缆的介绍 108.1光缆历史 108.2光缆的种类 118.3光缆网是信息高速路的基石 11九、 光端机的介绍 119.1模拟光端机 139.2数字光端机 13十、 光纤通信系统 1410.1名词解释 1410.2基本光纤通信系统 1410.3数字光纤通信系统 1410.4基本构成 1510.5备用系统与辅助设备 15十一、 光纤通信器件 1611.1光耦合器 1611.1.1耦合机理 1611.1.2.多模光纤耦合器 1811.2描述光耦合器特性的一些技术参数 1811.3波分复用/解复用器 2011.3.1光波分复用器的工作原理 2011.4滤波器 2111.4.1概念 2111.4.2固定波长滤波器 2211.4.3可调谐滤波器 2311.4.5光栅滤波器 2511.4.6声光滤波器 2711.5光开关 2711.6电光效应波导开关 2911.7光隔离器与光环形器 29十二、 光纤通信技术与产业发展中几个值得思考的问题 3412.1积极创新开发具有自主知识产权的新技术 3412.2开发具有先进技术水平、与使用环境、施工技术相配套的新产品 34十三、 参考文献 36前言人类社会的一切活动都离不开资讯的传递——通信,它像人的神经系统一样重要。通信是人与人之间通过某种媒体进行的信息交流与传递。从广义上说,无论采用何种方法,使用何种媒质,只要将信息从一地传送到另一地,均可称为通信。古代的通信方式有烽火台、击鼓、驿站快马接力、信鸽、旗语等。古代的通信对远距离来说,最快也要几天的时间,而现代通信以电信方式,如电报电话、快信、短信、E-MAIL等,实现了即时通信在目前人类的一切通信方式中,电话通信是应用最广泛的一种。电话通信的目的是达成人们在任意两地之间的通话。因此,必须要解决三个问题:第一是语音信号的发送和接收;第二是语音信号的传输;第三是语音信号的交换。第一个问题由使用者的终端设备——电话机来解决。第二个问题由各种类型的电话传输设备从最简单的音频传输线到多路载波设备,数位微波,卫星通信线路设备等等来解决。第三个问题,则由各种类型的电话交换设备来解决。这三个部分只要有系统地结合起来,就能构成一个完整的电话通信系统。而电话交换设备,是整个电话通信网路中的枢纽,有着相当重要的作用。20世纪90年代中期以前的光线通信系统事以电时分复用为基础的单波长系统。在新一代超高速光线通信系统中,最具代表性的成就事指在2000年,光波分复用系统使用波分复用技术在一根光纤上实现了3.28Tb/s的传输速率。光波分复用的突出优点是可有效地利用单模光纤地损耗区所带来的巨大带宽资源,明显提高系统的传输容量,同时将相应增加的成本降到很低的程度。目前,“掺铒光纤放大器+密集波分复用+非零色散光纤+光子集成”正成为国际上长途高速光纤通信线路的主要技术方向。同时,光交叉链接设备和光分插复用设备以及基于波长选路的密集波分复用全光网正在大力研究和试验。此外,新型的光器件,新兴的技术和新型的系统也都层出不穷,并获得迅速发展。光纤通信概念所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM-DD)。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调制发送机中的光源器件(LED),则LED就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。光纤通信的介绍光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤通信的原理是在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去。在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。光纤通信之所以发展迅猛,主要缘于它具有以下特点:(1)通信容量大、传输距离远。(2)信号串扰小、保密性能好。(3)抗电磁干扰、传输质量好。(4)光纤尺寸小、重量轻、便于敷设和运输。(5)材料来源丰富,环境保护好,有利于节约有色金属铜。(6)无辐射,难于窃听。(7)光缆适应性强,寿命长。光纤通信发展的历史伴随社会的进步与发展,以及人们日益增长的物质与文化需求,通信向大容量、长距离的方向发展已经是必然趋势。由于光波具有极高的频率,也就是说是具有极高的宽带从而可以容纳巨大的通信信息,所以用光波作为载体来进行通信是人们几百年来追求的目标。1966年,英籍华裔学者高锟博士在PIEE杂志上发飙了一篇十分著名的文章——《用于高频的光纤表面波导》,该文从理论上分析和证明了用光纤作为传输媒体以实现光通信的可靠性,并设计了通信用光纤的波导结。1970年,美国康宁玻璃公司根据高锟文章的设想,用改进型化学汽相沉积法制造出当时世界上第一根超低损耗光纤,成为使光纤通信爆炸性竞相发展的导火索。虽然当时康宁玻璃公司制造出的光纤只有几米长,衰耗约20dB/km,而且几个小时之后便损坏了。但它证明了用当时的科学技术与工艺方法制造通信用的超低损耗光纤是完全有可能的。1970年以后,世界各发达国家对光纤通信的研究倾注了大量的人力与物力,其来势之凶、规模之大、速度之快远远超出了人们的意料,使光纤通信技术取得了及其惊人的进展。从光纤的损耗来看,1970年是20dB/km,1972年是4dB/km,1974年是1.1dB/km,1976年是0.5dB/km,1979年是0.2dB/km,1990年是0.14dB/km,已经接近石英光纤的理论衰耗极限值0.1dB/km。从光器件看,1970年,美国贝尔公司研制出世界上第一只在室温下连续波工作的的砷化镓铝半导体激光器,为光纤通信找到了合适的光源器件。后来逐渐发展到性能更好、寿命达几万小时的异质结条形激光器和现在的分布反馈式单纵模激光器以及多量子阱激光器。光接收器件也从简单的硅PIN光二极管发展到量子效率达90%的雪崩光二极管APD。从光纤通信系统看,正是光纤制造技术和光电器件制造技术的飞速发展,以及大规模、超大规模集成电路技术和微处理机技术的发展,带动了光纤通信系统从小容量刀大容量、从短距离刀长距离、从低水平到高水平、从旧体制刀新体制的迅猛发展。光纤通信发展的现状1976年美国在亚特兰大进行的现场试验,标志着光纤通信基础研究发展到了商业应用的新阶段。此后,光纤通信技术不断创新;光纤从多模发展到单模,工作波长从0.85um发展到1.31um和1.55um,传输速率从几十兆特每秒发展到几十吉比特每秒。另一方面,随着技术的进步和大规模产业的形成,光纤价格不断下降,应用范围不断扩大;从初期的单一类型信息的传输到多种业务的传输。目前光纤已成为信息宽带传输的主要媒质,光纤通信系统将成为未来国家信息基础设施的支柱。总之,从1970年刀现在虽然只有短短30多年的时间,但光纤通信技术却取得了及其惊人的进展。用带宽极其惊人的进展。用带宽极其宽的光波作为传送信息的载体以实现通信,这一百年来人们梦寐以求的幻想在今天已成为活生生的现实。然而就目前的光纤通信而言,其实际应用的仅是其潜在能力的2%左右,尚有巨大的潜力等待人们去开发和利用。因此,光纤通信技术并未停滞不前,而是向高水平、更高阶段方向发展。光纤通信的优点光纤通信之所以受到人们的极大重视,这是因为和其它通信手段相比,具有无以伦比的优越性。1.通信容量大从理论上讲,一根仅有头发丝粗细的光纤可以同时传输1000亿个话路。虽然目前远远未达到如此高的传输容量,但用一根光纤同时传输24万个话路的试验已经取得成功,它比传统的明线、同轴电缆、微波等要高出几十乃至上千倍以上。一根光纤的传输容量如此巨大,而一根光缆中可以包括几十根甚至上千根光纤,如果再加上波分复用技术把一根光纤当作几根、几十根光纤使用,其通信容量之大就更加惊人了。2.中继距离长由于光纤具有极低的衰耗系数(目前商用化石英光纤已达0.19dB/km以下),若配以适当的光发送与光接收设备,可使其中继距离达数百公里以上。这是传统的电缆(1.5km)、微波(50km)等根本无法与之相比拟的。因此光纤通信特别适用于长途一、二级干线通信。据报导,用一根光纤同时传输24万个话路、100公里无中继的试验已经取得成功。此外,已在进行的光孤子通信试验,已达到传输120万个话路、6000公里无中继的水平。因此,在不久的将来实现全球无中继的光纤通信是完全可能的。3.保密性能好光波在光纤中传输时只在其芯区进行,基本上没有光“泄露”出去,因此其保密性能极好。4.适应能力强适应能力强是指,不怕外界强电磁场的干扰、耐腐蚀,可挠性强(弯曲半径大于25厘米时其性能不受影响)等。5.体积小、重量轻、便于施工维护光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底和架空。6.原材料来源丰富,潜在价格低廉制造石英光纤的最基本原材料是二氧化硅,即砂子,而砂子在大自然界中几乎是取之不尽、用之不竭的。因此其潜在价格是十分低廉的。光纤通信的发展趁势光纤通信从1970年真正起步,乃今为止仅有30多年的时间,但光纤通信的技术无论是光纤制造技术还是光电器件的制造技术,以及光纤通行系统的水平都取得了极其惊人的进展,它以成为现代通信最主要的传输手段。光纤通信的潜力是巨大的,目前的光纤通信应用水平据分析仅仅是其能力的1%~2%左右。光纤通信作为现代通信的主要支柱,在现代通信网中起着重要的作用。光纤通信具有以下几个发展趁势:6.1波分复用技术所谓波分复用,就是用一根光纤同时传输几种不同波长的光波,已达到扩大通信容量的目的。在系统的发送端,由各个分系统分别发出不同波长的光波,并由合波器合成一束光波进入光纤进行传输,而在接收端用光波分离开,分别输入刀各个系统的光接收机。6.2相干光通信乃今为止,已应用的光纤通信都是采用强度调制与直接检波的工作方式,它只相当于原始的无线通信所使用的调制与解调技术。在此方式下,光波元器件的调制速率、光接收机的灵敏度受到局限而难以再提高,适用不了超大容量、超长距离通信的要求。所谓相干光通信,就是在发端由激光器发出谱线较窄,频率稳定、相位恒定的相干光,并用先进的调制方法对之进行调制。在收端,把由光纤传输来的相干光载波与本振光源发出的相干光,经光耦合器后加到光混合器上进行混频与差额,然后把差额后的中频光信号进行放大、检波。6.3超大波长光纤通信为了实现越来越大的信息容量和超长距离传输,必须适用低损耗和低色散的单模光纤。目前石英光纤的损耗已接近理论极限值,再无多大潜力可挖。6.4光集成技术它和电子技术中的集成电路相类似,是把许多微型光学元件,如光源器件、光检测器,光透镜、光滤波器、光栅等集成在一块很小的芯片上,构成具有复杂性能的光器件;还可以和集成电路等电子元件集成在一起形成功能更复杂的光电部件,如光发送机与光接收机等。采用光集成技术,不仅是设备的体积、重量大大减少、而且提高了稳定性与可靠性。6.5光弧子通信通信容量越大,要求光脉冲越窄。窄光脉冲经光纤传输后,因光纤的色散作用出现脉冲展宽一直是制约大容量、长距离传输的关键因素。经研究发现,当注入光强密度足够大时,会引起光脉冲变窄的奇特现象,其光脉冲宽度可抵达几个皮秒,即所谓光弧子脉冲。因此用弧子脉冲可以实现超大容量的光纤通信。光纤的介绍7.1光纤概念光纤,是由纤芯和包层两部分组成的。纤芯区域完成光信号的传输,包层则是将光封闭在纤芯内,并保护纤芯,增加光纤的机械强度。目前,通信光纤的纤芯和包层的主体材料都是石英玻璃,但两区域中掺杂情况不同,因而折射率也不同。纤芯的折射率一般是1.463~1.467,包层的折射率是1.45~1.46左右。也就是说,纤芯的折射率比包层的折射率稍微大一些。这就满足了全反射的一个条件。当纤芯内的光线入射到纤芯与包层的交界面时,只要其入射角大于临界角,就会在纤芯内发生全反射,光就会全部由交界面偏向中心。当碰到对面交界面时,又全反射回来,光纤中的光就是这样在芯包交界面上,不断地来回全反射,传向远方,而不会漏射到包层中去。7.2光纤传输原理分析光独立传播定律认为,从不同光源发出的光线,以不同的方向通过介质某点时,各光线彼此互不影响,好象其他光线不存在似的。光的直线传播和折射、反射定律认为,光在各向同性的均匀介质(折射率n不变)中,光线按直线传播。光在传播中遇到两种不同介质的光滑界面时,光发生反射和折射现象。光在均匀介质中的传播速度为:V=c/n。(式中c是光在真空中的传播速度,n是介质的折射率)反射定律为反射线位于入射线和法线所决定的平面内,反射线和入射线处于法线的两侧,反射角等于入射角。折射定律为折射线位于入射线和法线所决定的平面内,折射线和入射线位于法线的两侧。光在传播过程中,若从一种介质传播到另一种介质的交界面时,因两种介质的折射率不等,将会在交界面上发生反射和折射现象。一般将折射率较大的介质称为光密媒质,折射率小的称为光疏媒质。为了保证光信号在光纤中能进行远距离传输,一定要使光信号在光纤中反复进行全反射,才能保证衰减最小,色散最小,到达远端。实现全反射的两个条件为:一定要使光纤纤芯的折射率n1大于光纤包层的折射率n2;光入光纤的光线向纤芯一包层界面入射时,入射角应大于临界角。7.3光纤的传输特性(1)损耗特性由于损耗的存在,在光纤中传输的光信号不管是模拟信号还是脉冲信号,其幅度都要减小。衰减是光纤的一个重要的传输参数。它表明了光纤对光能的传愉损耗、光纤每单位长度的损耗,直接关系到光纤通信系统传翰距离的长短,对光纤质量的评定和对光纤通信系统的中继距离的确定都起着十分重要的作用。形成光纤损耗的原因很多,既有来自光纤本身的损耗,也有光纤与光源的藕合损耗以及光纤之间的连接损耗。光纤本身损耗的原因主要有吸收损耗和散射损耗两类。吸收损耗是光波通过光纤的材料时,有一部分光能变成热能,从而造成光功率的损失。造成吸收损耗的原因很多,主要有本征吸收和杂质吸收。本征吸收是指光纤基本材料固有的吸收。本征吸收是不可避免的,所以本征吸收基本上确定了任何特定材料的吸收下限。对于石英光纤,本征吸收有两个吸收带;一个是紫外吸收带,一个是红外吸收带。光纤中的杂质吸收有铁、铬、铜等过渡金属离子和氢氧根离子吸收。目前过渡金属离子含量可以降低到0.4ppb以下,1ppb表示质量的十亿分之一,吸收峰损耗也可降低到1dB/km以下。由氢氧根离子产生吸收峰出现在950mm、1240mm和1390mm波和附近。其中以1390mm的吸收峰影响最为严重。一般氢氧根离子的含量可降低到l0.5dB/km以下。目前采用特殊的生产工艺几乎可以完全消除光纤内部的氢氧根离子,从而可以制成一个无水峰光纤,也称全波光纤。散射损耗是由于光纤的材料、形状、折射率分布等的缺陷或不均匀,使光纤中传导的光发生散射而产生的损耗。(2)色散特性光纤色散是光纤通信的最重要的传输特性之一。在光纤中由于不同成分的光信号有不同的传输速度。因而有不同的时间延时而产生的一种物理效应。在光纤中,不同速率的信号传过同样的距离需要不同的时间,从而产生时延差.时延差越大,色散越严重,因此可用时延差表示色散的程度。由干光纤中色散的存在,将直接导致光信号在光纤传愉过程中的畸变,会使输入脉冲在传输过程中展宽,产生码间干扰.增加误码率,从而限制了通信容量和传愉距离。因此制造优质的、色散小的光纤,对于通信系统容量和加大传输距离是非常重要的。从光纤色散产生的机理来看,它包括模式色散、材料色散和波导色散3种。模式色散:在多模光纤中由于各传输模式的传输路径不同,各模式到达出射端的时间不同,从而引起光脉冲展宽,由此产生的色散称为模式色散。材料色散:光纤材料石英玻璃的折射率对不同的传输光波长有不同的值,包含有许多波长的太阳光通过棱镜以后可分成7种不同颜色就是一个证明。由于上述原因,材料折射率随光波长而变化从而引起脉冲展宽的现象称为材料色散。波导色散:由于光纤的纤芯与包层的折射率差别很小,因而在界面产生全反射现象时,有一部分光进入到包层之内。由于出现在包层内的这部分光,大小与光波长有关,这就相当于光传输路径长度随光波波长的不同而异。具有一定波谱线宽的光源所发出的光脉冲射入到光纤后,由于不同波长的光其传输路程不完全相同,所以到达光纤出射端的时间也不相同,从而使脉冲展宽。具体说入射光的波长越长,进入到包层的光强比例就越大,传输路径距离越长。由上述原因所形成的脉冲展宽现象叫做波导色散。材料色散和波导色散都与光波长有关,所以又统称为波长色散。模式色散仅在多模光纤中存在,在单模光纤中不产生模式色散,而只有材料色散和波导色散。通常各种色散的大小顺序是模式色散>材料色散>波导色散,因此多模光纤的传输带宽几乎仅由模式色散所制约。在单模光纤中由于没有模式色散,所以它具有非常宽的带宽。色散的单位是指单位光源光谱宽度、单位光纤长度所对应的光脉冲的展宽。7.4光纤的型号介绍在这里主要介绍GYTA单模光纤。GYTA光缆的结构是将250µm光纤套入高模量材料制成的松套管中,松套管内填充防水化合物。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还需挤上一层聚乙烯(PE)。松套管围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水填充物。涂塑铝带(APL)纵包后挤制聚乙烯护套成缆。8、12代表是8芯和12芯,B1代表G.652类是常规单模光纤。通信光纤具体分为G.651、G.652、G.653、G.654、G.655和G.656六个大类和若干子类。(1)G.651类是多模光纤,IEC和GB/T又进一步按它们的纤芯直径、包层直径、数值孔径的参数细分为A1a、A1b、A1c和A1d四个子类。(2)G.652类是常规单模光纤,目前分为G.652A、G.652B、G.652C和G.652D四个子类,IEC和GB/T把G.652C命名为B1.3外,其余的则命名为B1.1。(3)G.653光纤是色散位移单模光纤,IEC和GB/T把G.653光纤分类命名为B2型光纤。(4)G.654光纤是截止波长位移单模光纤,也称为1550nm性能最佳光纤,IEC和GB/T把G.654光纤分类命名为B1.2型光纤。(5)G.655类光纤是非零色色散位移单模光纤,目前分为G.655A、G.655B和G.655C三个子类,IEC和GB/T把G.655类光纤分类命名为B4类光纤。光缆的介绍光缆(opticalfibercable)主要是由光导纤维(细如头发的玻璃丝)和塑料保护套管及塑料外皮构成,光缆内没有金、银、铜铝等金属,一般无回收价值。光缆是一定数量的光纤按照一定方式组成缆心,外包有护套,有的还包覆外护层,用以实现光信号传输的一种通信线路。即由光纤(光传输载体)经过一定的工艺而形成的线缆。图2-1光缆8.1光缆历史1976年,美国贝尔研究所在亚特兰大建成第一条光纤通信实验系统,采用了西方电气公司制造的含有144根光纤的光缆。1980年,由多模光纤制成的商用光缆开始在市内局间中继线和少数长途线路上采用。单模光纤制成的商用光缆于1983年开始在长途线路上采用。1988年,连接美国与英法之间的第一条横跨大西洋海底光缆敷设成功,不久又建成了第一条横跨太平洋的海底光缆。中国于1978年自行研制出通信光缆,采用的是多模光纤,缆心结构为层绞式。曾先后在上海、北京、武汉等地开展了现场试验。后不久便在市内电话网内作为局间中继线试用,1984年以后,逐渐用于长途线路,并开始采用单模光纤。通信光缆比铜线电缆具有更大的传输容量,中继段距离长、体积小,重量轻,无电磁干扰,自1976年以后已发展成长途干线、市内中继、近海及跨洋海底通信、以及局域网、专用网等的有线传输线路骨干,并开始向市内用户环路配线网的领域发展,为光纤到户、宽代综合业务数字网提供传输线路。8.2光缆的种类光缆的种类很多,其分类的方法就更多,下面介绍一些习惯的分类:(1)按敷设方式分有:自承重架空光缆、管道光缆、铠装地埋光缆和海底光缆。(2)按光缆结构分有:束管式光缆、层绞式光缆、紧抱式光缆、带式光缆,非金属光缆和可分支光缆。(3)按用途分有:长途通讯用光缆、短途室外光缆、混合光缆和建筑物内用光缆。8.3光缆网是信息高速路的基石光缆是当今信息社会各种信息网的主要传输工具。如果把“互联网”称作“信息高速公路”的话,那么,光缆网就是信息高速路的基石光缆网是互联网的物理路由。一旦某条光缆遭受破坏而阻断,该方向的“信息高速公路”即告破坏。通过光缆传输的信息,除了通常的电话、电报、传真以外,现在大量传输的还有电视信号、银行汇款、股市行情等一刻也不能中断的信息。目前,长途通信光缆的传输方式已由PDH向SDH发展,传输速率已由当初的140MB/S发展到2.5GB/S、4×2.5GB/S、16×2.5GB/S甚至更高。也就是说,一对纤芯可开通3万条、12万条、48万条甚至向更多话路发展。如此大的传输容量,光缆一旦阻断不但给电信部门造成巨大损失,而且由于通信不畅会给广大群众造成诸多不便,如计算机用户不能上网、股票行情不能知晓、银行汇兑无法进行、异地存取成为泡影、各种信息无法传输。在边远山区,一旦光缆中断,就会使全县甚至光缆沿线几个县在通信上与世隔绝,成为孤岛。给党政军机关和人民群众造成的损失是无法估量的。光端机的介绍当今社会,光纤通信已成为通信的主要手段之一。同时,光纤通讯技术也在飞速的发展,使得光纤传输系统以其众多的优点,赢得了大家的青睐。光纤传输系统具有以下显著优点:容量大、传输距离远、抗干扰能力强等。光传输系统由光发送机、传输介质、光接收机三部分组成。其中,光发送机与光接收机统称为光端机。光端机是光纤通信系统中的光纤传输中断设备,它们位于电端机和光纤传输线路之间。光端机就是将多个E1信号变成光信号并传输的设备,它的作用主要就是实现电-光和光-电转换。光端机根据传输E1口数量的多少,价格也不同。一般最小的光端机可以传输4个E1,目前最大的光端机可以传输4032个E1。图9--1光端机由于光纤传输的种种优点,光端机应用的场合非常广泛。例如可以应用于企业内部部门之间长距离局域网络之间的数据通信、移动网络中无线基站间传输系统,公共交换电话网中远端线路单元,商业网中提供专线及PABX群路的网络终端,校园网中的点对点链路和接入网中用于通常的信号传输等等。目前光端机应用最多的方面就是长距离视频和数据的传输。在高速公路、银行、电力、电信等的监控领域都要求对视频信号进行远程的传输,目前主要的解决方法是利用光端机将视频信号转化为数字信号通过光纤进行传输。此外光端机在远程视频会议、远程教学、远程医疗、通讯等诸多领域都有很广阔的用武之地,未来的光端机将向着数字化、网络化的方向发展。下图是光端机的工作原理:图9--2光端机工作原理图9.1模拟光端机模拟光端机采用了PFM调制技术实时传输图像信号,是目前使用较多的一种。发射端将模拟视频信号先进行PFM调制后(一般有调频、调相、调幅几种方式,从而把模拟光端机分成调频、调相、调幅等几种光端机),再进行电-光转换,光信号传到接收端后,进行光-电转换,然后进行PFM解调,恢复出视频信号。由于采用了PFM调制技术,其传输距离很容易就能达到30Km左右,有些产品的传输距离可以达到60Km,甚至上百公里。并且,图像信号经过传输后失真很小,具有很高的信噪比和很小的非线性失真。通过使用波分复用技术,还可以在一根光纤上实现图像和数据信号的双向传输。9.2数字光端机由于数字技术与传统的模拟技术相比在很多方面都具有明显的优势,所以正如数字技术在许多领域取代了模拟技术一样,光端机的数字化也是一种必然趋势。目前,数字图像光端机主要有两种技术方式:一种是MPEGII图像压缩数字光端机,另一种是非压缩数字图像光端机。图像压缩数字光端机一般采用MPEGII图像压缩技术,它能将活动图像压缩成N×2Mbps的数据流通过标准电信通信接口传输或者直接通过光纤传输。由于采用了图像压缩技术,它能大大降低信号传输带宽。图像压缩数字光端机一般采用MPEGII图像压缩技术,它能将活动图像压缩成N×2Mbps的数据流通过标准电信通信接口传输或者直接通过光纤传输。由于采用了图像压缩技术,它能大大降低信号传输带宽,以利于占用较少的资源就能传送图像信号。同时,由于采用了N×2Mbps的标准接口,可以利用现有的电信传输设备的富裕通道传输监控图像,为工程应用带来了方便。不过,图像压缩数字光端机也有其固有的缺点。其致命的弱点就是不能保证图像传输的实时性。因为图像压缩与解压缩需要一定的时间,所以一般会对所传输的图像产生1-2s的延时。因此,这种设备只适合于用在对实时性要求不高的场所,在工程使用上受到一些限制。另外,经过压缩后图像会产生一定的失真,并且这种光端机的价格也偏高。非压缩数字图像光端机的原理就是将模拟视频信号进行A/D变换后和语音、音频、数据等信号进行复接,再通过光纤传输。它用高的数据速率来保证视频信号的传输质量和实时性,由于光纤的带宽非常大,所以这种高数据速率也并没有对传输通道提出过高要求。非压缩数字图像光端机能提供很好的图像传输质量(信噪比大于60dB,微分相位失真小于2°,微分增益失真小于2%),达到了广播级的传输质量,并且图像传输是全实时的。由于采用数字化技术,在设备中可以利用已经很成熟的通信技术比如复接技术、光收发技术等,提高了设备的可靠性,也降低了成本。光纤通信系统10.1名词解释光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。10.2基本光纤通信系统最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。10.3数字光纤通信系统光纤传输系统是数字通信的理想通道。与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。因此,大容量长距离的光纤通信系统大多采用数字传输方式。在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulsecodemodulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。10.4基本构成(1)光发信机光发信机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。(2)光收信机光收信机是实现光/电转换的光端机。它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。(3)光纤或光缆光纤或光缆构成光的传输通路。其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。(4)中继器中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行整形。(5)光纤连接器、耦合器等无源器件由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。10.5备用系统与辅助设备为了确保系统的畅通,通常设置都有备用系统,就好比对磁盘的备份。正常情况下只有主系统工作,一旦主要系统出现故障,就可以立即切换到备用系统,这样就可以保障通信的畅通和正确无误。辅助设备是对系统的完善,它包括监控管理系统、公务通信系统、自动倒换系统、告警处理系统、电源供给系统等。其中,监控管理系统可对组成光纤传输系统的各种设备自动进行性能和工作状态的监测,发生故障时会自动告警并予以处理,对保护倒换系统实行自动控制。对于设有多个中继站的长途通信线路及装有通达多方向、多系统的线路维护中心局来说,集中监控是必须采用的维护手段。光纤通信器件11.1光耦合器光耦合器(Coupler)是能使光信号在特殊结构的耦合区发生耦合,并进行光功率再分配的器件。目前,光耦合器已形成一个多功能、多用途的产品系列。从功能上,可分为光功率分配器和光波长分配(合/分波)耦合器。从端口形式上,可分为X形(2×2)、Y形(1×2)、星形(N×N,N>2)以及树形(1×N,N>2)耦合器。从工作带宽上,可分为单工作窗口的窄带耦合器、单工作窗口的宽带耦合器和双工作窗口的宽带耦合器。另外,由于传导光模式的不同,又有多模光纤耦合器和单模光纤耦合器之分。11.1.1耦合机理1.单模光纤耦合器在单模光纤中,传导模是两个正交的基模(HE11模),耦合器中光场强分布如图所示。传导模进入熔融锥区,纤心不断变细,V值逐渐减小,有越来越多的光功率进入光纤包层中,实际光功率是在以包层为心、光纤外介质为包层的复合波导中传输的。在输出端,随着纤心的逐渐变粗,V值增大,光功率被两根纤心以特定比例捕获。在熔锥区,两根光纤包层合并在一起,两根光纤纤心足够接近,形成弱耦合,如图所示。假定光功率由一根光纤注入,初始条件为,。由此可求得每根光纤中的功率为可以看出,经过耦合区后,能量从第1根光纤向第2根光纤发生了转移,转移的能量有多少取决于两根光纤结构的差别、藕合系数和耦合长度显然,代表着光纤之间藕合的最大功率。当两根光纤相同时,有,则。定义耦合臂输出的光功率与直通臂输入的光功率之比为耦合比率。下图就是耦合比率与熔融拉伸长度的关系曲线。最大耦合比率可以达到100%。而且,对于不同的波长,耦合比率是不同的。即对某一个波长耦合比率可以达到100%,可以从耦合臂得到最大的输出。这时对另一个波长来说,耦合比率可能达到0,将从直通臂输出。11.1.2.多模光纤耦合器阶跃多模光纤的模式总数N=V2/2,当传导模(靠近光轴为低阶模,离光轴较远的是高阶模)进入多模光纤耦合器的熔锥区时,纤心变细,V值变小,纤心中束缚的模式数减小,较高阶模进入包层,形成包层模。在熔锥区,两光纤包层合并,在输出端纤心又逐渐变粗时,耦合臂的纤心将以一定比例捕获这些高次模式,获得耦合光功率,但低次模不参与耦合。11.2描述光耦合器特性的一些技术参数表示光纤耦合器性能的主要参数有插入损耗,附加损耗,分光比与隔离度(串音)。在实际的耦合器中,信号通过它时,总会有一些损耗。两种基本类型的损耗就是插入损耗和附加损耗。1.插入损耗(InsertionLoss)插入损耗是指光功率从特定的端口到另一端口路径的损耗。从输入端口k到输出端口j的插入损耗可表示为式中,为第k个输入端口的光功率,为第j个输出端口的光功率。插入损耗是各输出端口的输出功率状况,不仅与固有损耗有关,而且与分光比有很大的关系。2.附加损耗(ExcessLoss)附加损耗定义为输入功率与总输出功率的比值插入损耗并不能反映器件制作质量,这一点值得注意。3.分光比(CouplingRation)分光比是某一输出端口的光功率与所有输出端口光功率之比它是光耦合器特有的技术指标。它说明输出端口间光功率分配的百分比。对于2×2耦合器可以是4.隔离度(Isolation)隔离度是指光纤耦合器件的某一光路对其他光路中的光信号的隔离能力。隔离度高,也就意味着线路之间的“串扰”(crosstalk)小。对于光纤耦合器来说,隔离度更有意义的是用于反映WDM器件对不同波长信号的分离能力。其数学表达式是式中:是某一光路输出端测到的其他光路信号的功率值.是被检测光信号的输入功率值。从上述定义可知,隔离度对于分波耦合器的意义更为重大,要求也就相应地要高些,实际工程中往往需要隔离度达到40dB以上的器件;而一般来说,合波耦合器对隔离度的要求并不苛刻,20dB左右将不会给实际应用带来明显不利的影响。5.方向性(Directivity)方向性是光耦合器特有的技术指标,是衡量器件定向传输特性的参数。以X形耦合器为例,方向性定义为耦合器正常工作时,输入一侧非注入光的一端输出的光功率与全部注入的光功率的比值。式中,代表总注入光功率;代表输入端非注入光端口的输出光功率。6.均匀性(Uniformity)对于要求均匀分光的光耦合器(主要是树形和星形器件),实际制作时,因为工艺的局限,往往不可能做到绝对的均分。均匀性就是用来衡量均分器件的“不均匀程度”的参数。它定义为在器件的工作带宽范围内,各输出端口输出光功率的最大变化量.其数学表达式为式中:为最小输出光功率;为最大输出光功率。7.偏振相关损耗(PolarizationDependentLoss)衡量器件对于传输光信号的偏振态的敏感程度的参量,也称为偏振灵敏度。偏振相关损耗是衡量器件性能对于传输光信号的偏振态的敏感程度的参量,俗称偏振灵敏度。它是指当传输光信号的偏振态发生360°变化时,器件各输出端口输出光功率的最大变化量在实际应用中,光信号偏振态的变化是经常发生的,因此,为了不影响器件的使用效果往往要求器件有足够小的偏振相关损耗。11.3波分复用/解复用器11.3.1光波分复用器的工作原理光波分复用器是对不同波长的光波进行分离(分波、解复)与合并(合波、复用)的光无源器件。光波分复用器:将不同波长的光信号混合在一起送入同一根光纤中传输。光解复用器:将一根光纤中传来的多波长信号按波长进行分离。它在高速光通信系统、接入网、全光网络等领域中,光纤频带资源有着广阔的应用前景。本质上讲,波分复用/解复用器就是一种方向耦合器。从耦合机理分析可知,对于不同的波长,耦合比率是不同的。即对某一个波长耦合比率可以达到100%,可以从耦合臂得到最大的输出。这时对另一个波长来说,耦合比率可能达到0,将从直通臂输出。因此通过合理地设计耦合器的结构,就可以实现合波和分波的目的。实际的光波分复用器件的一个端口,作为器件的输出/输入端;N个端口作为器件的输入/输出端.如图所示。当器件用作解复用器时,注入到入射端(单端口)的各种光波信号,分别按波长传输到对应的出射端(N个端口之一)。对于不同的工作波长其输出端口是不同的。在给定的工作波长的光信号从输入单端口传输到对应的输出端口时,器件具有最低的插入损耗。而其他输出端口对该输入光信号具有理想的隔离。在器件用作复用器时,其作用同上述情况相反。在给定的工作波长的光信号从对应输入端口(N个端口之一)被传输到单端口时,具有最低的插入损耗.而其他输入端口对该输入光则有理想的隔离。11.4滤波器11.4.1概念滤波器是一种波长选择器件,在光纤通信系统中有着重要的应用,如光放大器中噪声的滤波。特别在WDM光纤网络中每个接收机都必须选择所需要的信道,滤波器成为必不可少的部分。滤波器分成固定滤波器和可调谐滤波器两大类。前者是允许一个确定波长的信号光通过,而后者是可以在一定光带宽范围内动态地选择波长,见图5.2.5所示。固定波长滤波器可调谐滤波器滤波器的特性如图所示。固定波长滤波器的主要参数是中心波长λ0,带宽Δλ,除它们以外,还有插入损耗和隔离度等。对于可调谐滤波器,主要参数有调谐范围、带宽、可分辨信道数、调谐速度、插入损耗、偏振相关损耗和分辨率等。其中可分辨信道数是信道范围与最小信道间隔之比。调谐速度指的是滤波器调到指定波长所需要的时间。分辨率是滤波器能检测的最小波长偏移。11.4.2固定波长滤波器1.薄膜干涉滤波器这种滤波器采用多层不同材料的介质薄膜构成,一层为高折射率,一层为低折射率,交叠而成。每层介质的等效光学厚度为λ/4,利用各层的反射光与入射光的干涉效应实现滤波。薄膜干涉滤波器结构当光由光疏介质入射到光密介质时,反射光不产生相移;而当光由光密介质入射到光疏介质时,反射光产生180°相移。由于介质厚度为λ/4,光经低折射率层内传输、反射、再传输后的总相移为360°,与经高折射率层的反射光同相叠加,这样,在中心波长附近,各层的反射光叠加,在滤波器上端面形成很强的反射光,得到具有一定带宽的中心波长光信号。其它频率的光因不能满足相长干涉而不能被反射。2.法布里-珀罗固定波长滤波器法布里-珀罗固定波长滤波器是由两片平行镜组成的谐振腔组成当入射光波长满足谐振条件时方能通过。式中L为谐振腔体的长度,m为整数该滤波器的传输特性可由下式表示式中,是介质和平行镜吸收引起的插入损耗,R为两平行镜的反射率。由上式可看出,传输特性是与R密切相关的一个周期函数,图(b)画出了传输特性曲线,我们将周期长度称为自由光谱范围FSRF-P滤波器的带宽由下列公式给出定义为F-P滤波器的精细度,它反映滤波器的选择性,即能分辨的最小频率差。11.4.3可调谐滤波器严格来说,可调谐滤波器属于有源器件,它可以通过控制电压或温度的变化来改变滤波器的某些参数,从而达到波长动态选择的目的。可调谐滤波器主要使用在WDM系统中。WDM网络中所有波长都应从ITU标准中选取,如波长间隔约为0.8nm(1550nm窗口),则对应信道频率间隔是100GHz。所以可调谐滤波器的调谐范围、带宽应该根据要求来设计。下面介绍以下几种滤波器1.光纤法布里-珀罗滤波器下图是一个光纤法布里-珀罗滤波器的结构示意图其工作原理与固定波长滤波器相同,输入光纤和输出光纤的两个端面被抛光镀膜,两个光纤端面之间的部分构成了法布里-珀罗腔,这两根光纤经过支架与压电陶瓷相连,对压电陶瓷施加电压(300~500V)可使支架产生左右变化的位移,从而改变反射镜之间的长度,达到波长调谐的目的。如果不是通过压电陶瓷改变腔长,而是在两光纤端面之间填入介质液晶,由于液晶的折射率随着施加电压的变化迅速改变,腔的光程nL也随之变化。这种填充液晶的滤波器调谐时间在10ns内,调谐范围达80nm,波长分辨率0.05~0.10nm,插入损耗为几个分贝。11.4.4马赫-曾特干涉滤波器马赫一曾德尔(Mach一Zehnder)光纤干涉滤波器由两个3dB耦合器串联组成一个马赫一曾德尔干涉仪,干涉仪的两臂长度不等,光程差为ΔL。马赫-曾特(M-Z)干涉滤波器的机理是,两个相干单色光经过不同长度光波导传输后发生干涉。考虑两个波长λ1和λ2复用后的光信号由光纤送入马赫一曾德尔干涉滤波器的输入端1,两个波长的光功率经第一个3dB耦合器均匀地分配到干涉仪的两臂上,由于两臂的长度差为ΔL,所以经两臂传输后的光,在到达第二个3dB耦合器时就产生相位差。,式中n是波导折射率,复合后每个波长的信号光在满足一定的相位条件下,在两个输出光纤中的一个相长干涉,而在另一个相消干涉。如果在输出端口3,λ2满足相长条件,λ1满足相消条件,则输出λ2光;如果在输出端口4,λ2满足相消条件,λ1满足相长条件,则输出入λ1光。马赫一曾德尔光纤干涉滤波器与上面的马赫一曾德尔干涉仪原理基本相同,但在最后输出时还是有细微的差别。马赫一曾德尔干涉仪中来个相干光经过分束器2后相互叠加,然后合为一路输出。而在马赫一曾德尔光纤干涉滤波器中,两个相干光在通过第2个3dB耦合器时,实际上沿着两个光路传播的,只不过这两路光靠得非常近,使得它们相互耦合而交换能量,最后还是从两个光路输出,但这时每个光路输出光功率与光通过第2个3dB耦合器前不同,其变化的程度取决于耦合程度。马赫一曾德尔干涉滤波器的原理可进一步用耦合波理论来解释。从输入端口1到输出端口3和4的传输特性分别可表示为由此可见,从干涉仪端口3和4输出的光强随λ和ΔL呈正弦或余弦变化。因此,若有两个波长为λ1和λ2的光波从端口1输入而且分别满足则有这就是说,在输入端口输入波长间距为(相应的频率间隔为)的光,分别在不同的输出端口输出。这种滤波器要求输入光波的频率间隔必须精确地控制在的整数倍。当波长数为4个时,需要3个马赫一曾德尔干涉滤波器级联,当波长数为8个时,需要三级共7个马赫一曾德尔干涉滤波器级联,而且要使第一级的频率间隔为,第二级的频率间隔为2,第三级的频率间隔为4,才能将它们分开,如图所示。改变既可以通过分别控制有效光通道的折射率n和长度差ΔL,也可以同时控制n和ΔL。还可以通过对热敏薄膜加热或者改变压电晶体的控制电压来达到。级联马赫一曾德尔干涉滤波器可以用光纤耦合器或硅衬底上的硅波导(平面光波导)来实现。因为这种滤波器的调谐机理是热电的,所以切换时间约为1ms。此外,马赫一曾德尔干涉仪(M一ZI)构成的可调谐滤波器制造成本低,对偏振很不灵敏,串音很低。但是调谐控制复杂,调谐速度较慢。11.4.5光栅滤波器(1)布拉格光栅布拉格(Bragg)光栅由间距为Λ的一列平行半反射镜组成Λ称为布拉格间距。如果半反射镜数量N(布拉格周期)足够大,那么对于某个特定波长的光信号,即使功率反射系数R很小,从第一个反射镜反射出来的总能量Er,tot约为入射的能量Ein。该特定波长λB强反射的条件是式中n代表布拉格光栅的阶数,当n=1时,表示一阶布拉格光栅,此时;当n=2时,表示二阶布拉格光栅,此时。上式表明,布拉格间距(或光栅周期)应该是λB波长一半的整数倍,布拉格光栅的基本特性就是以共振波长为中心的一个窄带光学滤波器。该共振波长称为布拉格波长。光纤光栅是利用光纤中的光敏性而制成的。所谓光敏性,是指强激光(在10~40ns脉冲内产生几百毫焦耳的能量)辐照掺杂光纤时,光纤的折射率将随光强的空间分布发生相应的变化,变化的大小与光强成线性关系。如用特定波长的激光干涉条纹(全息照相)从侧面辐照掺锗光纤,就会使其内部折射率呈现周期性变化,就像一个布拉格光栅,成为光纤光栅。如图(a)所示。这种光栅在大约500°C以下稳定不变,但用在InP衬底上用InxGa1-xAsyP1-y材料制成凸凹不平结构的表面,其间距为Λ光栅,就构成一个单片集成布拉格光栅,如图(b)所示。利用光纤布拉格光栅反射布拉格共振波长附近光的特性,可以做成波长选择分布式反射镜或带阻滤光器。如果在一个2x2光纤耦合器输出侧的两根光纤上写入同样的布拉格光栅,则还可以构成带通滤波器。11.4.6声光滤波器声光滤波器结构类似于M-Z滤波器。其中的两臂被刻蚀在LiNbO3双折射半导体中,进入的光被输入偏振器分成TE波和TM波。一个换能器产生表面声波,在LiNbO3中引起折射率的周期性波动,这种波动等效为动态的布拉格光栅,由于光栅相互作用,满足谐振条件(对应某一波长)的TE模光能被转化成TM模,而TM模的光能转换TE模,然后经输出偏振器输出,波长不满足谐振条件的信号将从另一个端口输出。11.5光开关光开关的功能是转换光路,实现光信号的交换。光开关Switches应用:应用开关时间需求光路的交换及管理(OADM、OXC)1~10ms保护开关1~10ms光包交换1ns外调制10ps对光开关的要求是插入损耗小、串音低、重复性高、开关速度快、回波损耗小、消光比大、寿命长、结构小型化和操作方便。光开关分类机械光开关:包括微机械光开关波导光开关:利用电光、磁光、热光和声光效应机械光开关机械光开关优缺点在插入损耗、隔离度、消光比和偏振敏感性方面具有良好的性能;但开关时间较长(几十毫秒到毫秒量级);开关尺寸较大,而且不易集成。金属薄膜关开关的结构波导芯层下面是底包层,上面则是金属薄膜,金属薄膜与波导之间为空气。通过施加在金属薄膜与衬底之间的电压,使金属薄膜获得静电力,在它的作用下,金属薄膜向下移动与波导接触在一起,使波导的折射率发生改变,从而改变了通过波导光信号的相移。金属薄膜M-Z型光开关结构如果不加电压,金属薄膜跷起,M-Z干涉仪两个臂的相移相同,此时光信号从端2输出;如果加电压,金属薄膜与波导接触,引起该臂的π相移,光信号从端口1输出。热光效应光开关基本结构:MZ干涉仪,通过改变某一干涉臂的材料温度,改变介质的折射率,而改变其相位差,进而实现光信号的通断特点:可以集成、开关速度优于机械式(ms)11.6电光效应波导开关开关时间短(可达10ps~1ns);体积非常小,而且易于大规模集成;但插入损耗、隔离度、消光比和偏振敏感性指标都比较差。上图是由两个Y形LiNbO3波导构成的马赫-曾德尔1×1光开关,它利用电光效应原理工作。晶体折射率随外加电场而变化。→→→在理想的情况下,输入光功率在C点平均分配到两个分支传输,在输出端D干涉,其输出幅度与两个分支光通道的相位差有关。当A、B分支的相位差=0时输出功率最大,当=π/2时,两个分支中的光场相互抵消,使输出功率最小,在理想的情况下为零。相位差的改变由外加电场控制(材料的折射率随电压的变化而改变)。11.7光隔离器与光环形器隔离器是一种只允许光单方向传输的器件。光纤通信系统中的很多光器件如激光器,光放大器对来自连接器,熔接点,滤波器的反射光非常敏感,反射光将导致它们的性能恶化,例如半导体激光器的线宽受反射光的影响会展宽或压缩,甚至可达几个数量级。因此要在靠近这种光器件的输出端放置隔离器,可以阻止反射光的影响。理解隔离器工作原理的基础是法拉第磁光效应。法拉第(Faraday,Michael,1791一1567.英国物理学家和化学家)于1845年发现,当磁场作用在一块玻璃上,平面偏振光在玻璃中沿着磁场传播会发生光的振动面旋转。这一效应就称为法拉第磁光效应。法拉第磁光效应也称为磁致旋光。法拉第磁光效应实验装置示意入射光沿z轴正方向行进,通过起偏器P1后变成沿x轴振动的线偏振光。线偏振光通过密绕螺线管中非铁磁性媒质,图上磁感应强度B沿z轴正方向,与光传播方向相同。光通过磁场后,振动面转过角度θ,θ与光通过的媒质长度L及H(=B/μ)的关系为:比例因子V称为费尔德常数,表示单位磁场强度使光偏振面旋转的角度。。费尔德常数和光的频率及媒质温度有关。对于大多数物质,费尔德常数为正。我们规定:当光的传播方向和磁场方向平行时,迎着B的方向观察,光的振动面向左旋转(逆时针),则费尔德常数为正。用右手螺旋法则很容易记住:如费尔德常数为正,则当右手姆指指向B的方向,其余成拳的四个手指的方向就是光振动面旋转的方向。几乎所有的物质(包括气体、液体、固体)都存在法拉第效应,不过一般都不显著。掺稀土离子玻璃的费尔德常数稍大。近年来研究的钇铁石榴石(YIG)等晶体的费尔德常数较大。对石英光纤,V=4.86×10-6r/A(弧度/安培)。注意旋光现象与磁致旋光现象的区别:(偏振光通过某些透明物质后,其振动面方将以光的传播方向为轴线转过一定的角度,这种现象称为旋光现象。也称为自然旋光。)旋光和磁致旋光都引起振动面转动,但两者有一个根本的不同。这一点在它们沿正反两个方向通过引起旋光的物质体现出来。在自然旋光现象中,左右旋是由旋光物质决定的,与光的传播方向是否反转无关。举例来说,当线偏振光通过右旋的自然旋光物质时,无论光束沿正反方向传播,迎着传播方向看去,振动面总是向右旋转.因此如果透射光沿原路返回,其振动面将回到初始位置。而在法拉第磁光效应中,振动面转动方向只决定于磁场方向,无论光向前和向后传播,只要磁场方向不发生改变,振动面都向同一方向转动。例如,当线偏振光通过磁光介质时,如果沿磁场方向传播,且振动面向右旋;当光束沿反方向传播时,迎着传播方向看去振动面将向左旋.所以,如果光束由于反射一正一反两次通过磁光介质后,振动面的最终位置与初始位置比较,将转过2ψ的角度。因此,在自然旋光中,线偏振光向前传播所产生的振动面转动的方向和光反方向传播所引起的振动面转动的方向相反,光在晶体中来回传播,振动面转动效应抵消,结果振动面转动角度为零;而在磁光效应中,若偏振光先顺着B的方向传播再沿原路返回,那么法拉第旋转的左右方向互换,振动面转动角度加倍。法拉第磁光效应的这一特性就构成了下面光隔离器的关键基础。隔离器由三个功能部件组成,输入偏振器(起偏器)、法拉第磁光效应旋转器、输出偏振器(检偏器)输入和输出偏振器的作用是将光变成固定偏振方向的线偏振光。法拉第磁光效应旋转器是使入射光的偏振方向发生旋转变化。调节磁场强度使旋转器旋转的角度为45°。入射光经过输入偏振器后变成垂直偏振光。经过法拉第旋转器,垂直偏振光的偏振方向旋转了45°,输出偏振器的方向设计成输入偏振器的透光轴45°角,所以允许其通过;另一方面,在隔离器的反方向上,反射光经输出偏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论