方向性系数课件_第1页
方向性系数课件_第2页
方向性系数课件_第3页
方向性系数课件_第4页
方向性系数课件_第5页
已阅读5页,还剩103页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章电磁波辐射1.第八章电磁波辐射1.

第六章讨论了电磁波在无界空间的传播问题和在分界面上的反射与透射问题,第七章讨论了电磁波在均匀导波系统内的传播问题,所有这些讨论都是假定电磁波已经建立,那么电磁波究竟是如何产生的呢?本章将着手讨论该问题。

产生电磁波的振荡源一般称为天线。对于天线,所关心的是它的辐射场强、方向性、辐射功率和效率等。2.第六章讨论了电磁波在无界空间的传播问题和

天线按结构可分为线天线和面天线两大类,线状天线如八木天线、拉杆天线等称为线天线,面状天线如抛物面天线等称为面天线。本章将首先从滞后位出发,根据矢量位求电流元和电流环产生的电磁场,再介绍天线的电参数和一些常用的天线。3.天线按结构可分为线天线和面天线两大类,线8.1电流元的辐射

如图8-1所示,设一个时变电流元位于坐标原点,沿Z轴放置,空间的媒质为线性均匀各向同性的理想介质。所谓电流元是指很短,沿上的电流振幅相等,相位相同。由第五章介绍的滞后位知:电流元产生的矢量位为(8-1)lI图8-1电流元的坐标4.8.1电流元的辐射如图8-1所示,设一个利用球坐标与直角坐标单位矢量之间的互换关系式(1-20),可得矢量位在球坐标系中的三个分量为

(8-2)则电流元产生的磁场强度为将式(8-2)代入上式,得5.利用球坐标与直角坐标单位矢量之间的互换关系式5.

(8-3)将式(8-3)代入麦克斯韦方程,得其中

(8-4a)(8-4b)(8-4c)

6.6.下面分别讨论电流元附近和远距离处的电磁场表达式。这里所讲的远近是相对于波长而言的,距离远小于波长的区域称为近区,反之,距离远大于波长的区域称为远区。(1)当,即或时,,那么由式(8-3)和式(8-4)得(8-5a)(8-5b)(8-5c)7.下面分别讨论电流元附近和远距离处的电磁场表达式。这里所讲

从以上结果可以看出,式(8-5a)与恒定电流元产生的磁场相同。考虑到,式(8-5b)和式(8-5c)与电偶极子产生的静电场相同。所以可把时变电流元产生的近区场称为似稳场。由式(8-5)还可以看出,电场与磁场的相位差为,平均能流密度矢量

这表明近区场没有电磁能量向外辐射,能量被束缚在源的周围,因此近区场又称为束缚场。8.从以上结果可以看出,式(8-5a)与恒定电流元产生(2)当,即或时,式(8-3)和式(8-4)中的及其高次项可以忽略,并将代入得(8-6a)(8-6b)式中为媒质的本质阻抗。由上式可见,电流元产生的远区场具有如下特点:

(a)在远区,平均能流密度矢量

这表明有电磁能量沿径向辐射,所以远区场又称为辐射场。9.(2)当,即或时,

(b)远区电场与磁场相互垂直,且与传播方向垂直,电场与磁场的比值等于媒质的本质阻抗,即。

(c)远区电磁场只有横向分量,在传播方向上的分量等于零,所以远区场为TEM波。

(d)远区场的振幅不仅与距离有关,而且还与观察点的方位有关,即在离开电流元一定距离处,场强随角度变化的函数称为方向图函数,用表示。由式(8-6)可见,沿Z轴放置的电流元的方向图函数为,在电流元的轴线方向上辐射为零,在垂直于电流元轴线的方向上辐射最强。电流元的辐射场强与方位角无关。10.(b)远区电场与磁场相互垂直,且与传播方向垂直,电

下面讨论电流元在远区产生的辐射功率。用一个球面将电流元包围起来,电流元的辐射功率将全部穿过球面,则电流元产生的总辐射功率为

将代入上式,可得自由空间中电流元的辐射功率为(8-7)此辐射功率是由与电流元相连的电源供给的,可用一个电阻上的消耗功率来等效,则此等效电阻称为辐射电阻。11.下面讨论电流元在远区产生的辐射功率。用一个球面将

根据和式(8-7),可得电流元的辐射电阻为(8-8)辐射电阻是用来衡量天线的辐射能力的,辐射电阻越大意味着天线向外辐射的功率越大,天线的辐射能力越强。12.根据12.8.2天线的电参数

一、方向图函数和方向图在离开天线一定距离处,辐射场在空间随角度变化的函数称为天线的方向图函数,用表示。根据方向图函数绘制的图形称为天线的方向图。由于天线的辐射场分布在整个空间,所以天线的方向图通常是一个三维的立体图形。要绘制这样的三维立体方向图是不方便的,通常工程上采用两个相互垂直的主平面上的方向图来表示,即E面方向图和H面方向图。13.8.2天线的电参数一、方向图函数和方向图13.E面是指电场强度矢量所在并包含最大辐射方向的平面,H面是指磁场强度矢量所在并包含最大辐射方向的平面。对于上节介绍的电流元,其方向图函数为。采用极坐标,以为变量,在等于常数的平面内,方向图函数的变化轨迹为两个圆,如图8-2a所示。由于方向图函数与无关,所以在的平面内,方向图函数的变化轨迹为一个圆,如图8-2b所示。电流元的立体方向图如图8-2c所示。14.E面是指电场强度矢量所在并包含最大辐射方向的平面,H面是图8-2a电流元E面方向图图8-2b电流元H面方向图xyz图8-2c电流元立体方向图15.图8-2a电流元E面方向图图8-2b电流元H面方向图xyz实际天线的方向图要比图8-2复杂。图8-3为某天线的方向图,它有很多波瓣,分别称为主瓣、副瓣和后瓣。其中最大辐射方向的波瓣称为主瓣,其他波瓣统称为副瓣,把位于主瓣正后方的波瓣称为后瓣。主瓣第一副瓣后瓣主轴图8-3天线方向图的一般形状16.实际天线的方向图要比图8-2复杂。图8-3为某

主瓣最大辐射方向两侧的两个半功率点(即场强为最大值的倍)之间的夹角,称为主瓣宽度,也称半功率波瓣宽度,用或表示。主瓣宽度愈小,天线辐射的电磁能量愈集中,定向性愈好。在主瓣最大方向两侧,两个零辐射方向之间的夹角,称为零功率波瓣宽度,用表示。由图8-2可见,电流元的主瓣宽度,零功率波瓣宽度。17.主瓣最大辐射方向两侧的两个半功率点(即场强

副瓣最大辐射方向上的功率密度与主瓣最大辐射方向上的功率密度之比的对数值,称为副瓣电平,用dB表示。通常离主瓣近的副瓣电平要比远的高,所以副瓣电平通常是指第一副瓣电平。一般要求副瓣电平尽可能低。

主瓣最大辐射方向上的功率密度与后瓣最大辐射方向上的功率密度之比的对数值,称为前后比。前后比愈大,天线辐射的电磁能量愈集中于主辐射方向。18.副瓣最大辐射方向上的功率密度与主瓣最大辐

二、方向性系数为了从数量上说明天线辐射功率的集中程度,可用一个参数—方向性系数来衡量。方向性系数的定义为:在相等的辐射功率下,天线在其最大辐射方向上产生的功率密度与理想的无方向性天线在同一点产生的功率密度之比,即(8-9)式中和分别表示被研究天线的辐射功率密度和场强,和分别表示理想无方向性天线的辐射功率密度和场强。19.二、方向性系数19.

天线的方向性系数也可以定义为:在天线最大辐射方向上产生相等电场强度的条件下,理想的无方向性天线所需的辐射功率与被研究天线的辐射功率之比,即(8-10)对于被研究的天线,其辐射功率

(8-11)20.天线的方向性系数也可以定义为:在天线最大辐射方向

式中,为归一化的方向图函数,其定义为

为方向图函数的最大值。对于理想的无方向性天线,其辐射功率为(8-12)将式(8-11)和(8-12)代入式(8-10)得(8-13)由上式可以求得电流元的方向性系数为1.5。21.式中,为归一化的方向图函数,其定义为21.

三、辐射效率实际使用的天线均具有一定的损耗,根据能量守恒定律,天线的输入功率一部分向空间辐射,一部分被天线自身消耗。因此,实际天线的输入功率大于辐射功率。天线的辐射功率与输入功率之比称为天线的辐射效率,用表示,即

(8-14)22.三、辐射效率22.四、增益系数方向性系数是表征天线辐射电磁能量的集中程度,辐射效率则是表征天线的能量转换效率,将两者结合起来就可以得到天线的另一个参数—增益系数,其定义为:在相同的输入功率下,天线在其最大辐射方向上产生的功率密度与理想的无方向性天线在同一点产生的功率密度之比,即

(8-15)23.四、增益系数23.

增益系数也可以定义为:在天线最大辐射方向上产生相等电场强度的条件下,理想的无方向性天线所需的输入功率与被研究天线的输入功率之比,即(8-16)若假定理想的无方向性天线的效率,那么由上述关系,可得(8-17)24.增益系数也可以定义为:在天线最大辐射方向上产生相

8.3电流环的辐射如图所示,一个半径为(),载有电流的细导线圆环,通常称之为电流环或磁偶极子。此时可认为流过电流环的电流大小和相位处处相等。

为了简单起见,把观察点放在平面,即平面上,不失一般性。电流环的矢量位(8-18)yxra25.8.3电流环的辐射yxra25.由【例3-2】知: (8-19)

因为,将上式展开为泰勒级数,取前两项,得

26.由【例3-2】知:26.因为,所以

则(8-20)

将式(8-19)和式(8-20)代入式(8-18),得(8-21)27.因为,所以27.根据,求得电流环产生的磁场为(8-22a)(8-22b)(8-22c)再根据麦克斯韦方程,可得电流环产生的电场为(8-23a)(8-23b)28.根据,求得电流环产生的磁场为28对于电流环感兴趣的是其远区场,因,由式(8-22)和式(8-23)得

(8-24a)

(8-24b)式中。上式表明电流环产生的远区电场与磁场相互垂直,且与波的传播方向垂直。29.对于电流环感兴趣的是其远区场,因,电流环的平均功率密度为

(8-25)辐射功率为

(8-26)利用关系式,可得电流环的辐射电阻为(8-27)30.电流环的平均功率密度为30.8.4缝隙的辐射如图8-5所示,在无限大且无限薄的理想导体平面上开一个窄缝隙,缝隙的长度,宽度。当缝隙被激励后,会向外辐射电磁能量而形成一个辐射单元。在高速飞行器上使用这种辐射单元组成的天线,由于它与飞行器的结构共形,因而不会妨碍飞行器的高速飞行。31.8.4缝隙的辐射如图8-5所示,在无限大且无限

在高频电源的激励下,缝隙中将会产生电场,由于,再忽略缝隙两端的边缘效应,可以认为缝隙中的电场是均匀的。根据理想导体的边界条件,在平面上缝隙以外区域,电场的切向分量

图8-5缝隙的结构yzxld图8-6磁流元32.在高频电源的激励下,缝隙中将会产生电场,由

为零,缝隙中电场的切向分量。在的半空间,缝隙相当于一个等效磁流元,其等效磁流密度为(8-28)也就是说,缝隙可以被等效为一个片状的沿轴放置的线磁流元,如图8-6所示。根据与全电流定律对偶的全磁流定律(8-29)积分路径紧贴着磁流源,可得等效磁流强度为(8-30)33.为零,缝隙中电场的切向分量。在的半空间,缝隙相当根据电流元的远区辐射场公式(8-6)和对偶原理,可得磁流元的辐射场为(8-31a)(8-31b)将式(8-30)代入上式,得缝隙在半空间的辐射场为(8-32a)(8-32b)34.根据电流元的远区辐射场公式(8-6)和对偶原理,可得磁在的半空间,由于等效磁流与半空间的等效磁流大小相等方向相反,所以缝隙在半空间的辐射场为式(8-32)的负值。缝隙的总辐射功率和辐射电阻分别为

(8-33)(8-34)35.在的半空间,由于等效磁流与半空间的等效磁流大小8.5对称振子天线对称振子天线是由两段同样粗细和等长的导线构成,在两段导线中间的两个端点对称馈电,如图8-7所示。振子两臂的长为,半径为。ll

azyx图8-7对称振子天线36.8.5对称振子天线对称振子天线是由两段同样粗细对称振子天线是一种最基本最常用的线天线,既可以单独使用,也可以作为阵列天线的组成单元。知道对称振子天线上的电流分布,就可以求出其辐射场。要精确计算对称振子天线上的电流分布,需要采用数值分析方法,计算比较麻烦。实际上,对称振子可以看成是由终端开路的平行双线张开而成,理论和实验均表明,细对称振子的电流分布可以认为具有正弦驻波分布。设对称振子沿Z轴放置,馈电中心位于坐标原点,如图8-8所示,则对

37.对称振子天线是一种最基本最常用的线天线,既可以单称振子上的电流分布可以表示为(8-35)式中为电流波幅,。zyxPrdz'z'z'cosr'图8-8对称振子的辐射场38.称振子上的电流分布可以表示为zyxPrdz'z'z'c

将对称振子看成是由许多电流振幅不同相位相同的电流元组成。根据叠加原理,对称振子在空间P点的辐射场就等于这些电流元在该点的辐射场的叠加。根据式(8-6),电流元产生的远区辐射场为(8-36)由于,可以认为,在计算电流元至观察点的距离时,可近似认为,在计算电流元至观察点的相位差时,。那么对称振子的远区电场为39.将对称振子看成是由许多电流振幅不同相位相

(8-37)根据方向图函数的定义,可得对称振子天线的方向图函数为(8-38)由此可见,沿Z轴放置的对称振子天线的方向图函数与方位角无关,仅与方位角和振子长度有关。40.40.图8-9绘出了几种不同长度的对称振子在天线所在平面内的方向图,将这些平面方向图沿Z轴旋转一周即构成空间方向图。由图可见,无论对称振子的长度如何,天线在和的轴线方向上都没有辐射,这是因为每个电流元在轴线方向上辐射为零。当天线的长度时,振子臂上的电流是同相的,在上辐射场是同相叠加,合成场强最强,所以的方向为主辐射方向。当天线的长度时,振子臂上出现反向电流,出现了副瓣。41.图8-9绘出了几种不同长度的对称振子在天线所在平2l=/2图8-9几种对称振子天线的方向图42.2l=/2图8-9几种对称振子天线的方向图42.长度为半个波长的对称振子天线称为半波天线。将代入式(8-38),得半波天线的方向图函数为(8-39)由式(8-37)得半波天线的远区电场为

(8-40)因此,半波天线的辐射功率43.长度为半个波长的对称振子天线称为半波天线。将

(8-41)

由此可得半波天线的辐射电阻为(8-42)44.44.上式中的积分用数值方法求得其值约为1.218,那么半波天线的辐射电阻为

由式(8-13)可求得半波天线的方向性系数为

(8-43)45.上式中的积分用数值方法求得其值约为1.218,那么半波天8.6天线阵一、方向图相乘原理工程上需要天线具有高增益、高方向性,需要各种形状的方向图,有时需要方向图尖锐,有时需要方向图均匀,而前面介绍的单元天线很难满足这些要求,人们自然想起将许多天线放在一起构成一个天线阵,天线阵的方向图与每个天线的类型,馈电电流的大小和相位有关,因此调整天线间的位置,馈电电流的大小和相位,可以得到不同形状的方向图,以适应工程的需要。46.8.6天线阵一、方向图相乘原理46.下面以二元阵为例,说明天线阵的基本原理和特性。如图8-10所示,假设天线1与天线2为同一类型的天线,在空间的取向相同,天线间的距离为,它们至观察点的距离分别为和,对于远区场,可以近似认为与平行,在计算两天线至观察点的距离时,可近似认为,在计算两天线至观察点的相位差时,。47.下面以二元阵为例,说明天线阵的基本原理和特性。如图8-10二元阵的辐射P

假设天线2与天线1之间的电流关系为(8-44)式中、为常数。那么天线2的辐射波到达观察点P点时比天线1的辐射波到达P点时超前相位

第一项是两天线的波程差引起的,第二项是两天线的电流相对相位引起的。式中的表示天线阵轴线与平行射线之间的夹角。48.P

若天线1在观察点P产生的场强为,由于电场强度与电流成正比,所以天线2在P点产生的场强为,那么二元阵在观察点P产生的合成场强为(8-45)由此可见,合成场由两部分相乘得到,即第一部分是天线1单独在观察点P产生的场强,与单元天线的类型和空间取向有关,而与天线阵的排列方式无关。第二部分与单元天线无关,只与天线的相互位置、馈电电流的大小和相位有关,这一部分称为阵因子。因此,式(8-45)表明天线阵的方向图等于单元天线的方向图与阵因子方向图的乘积,称为方向图相乘原理。49.若天线1在观察点P产生的场强为,由于电场强度二、均匀直线阵所谓均匀直线式天线阵是指各单元天线以相同的取向和相等的间距排列成一直线,它们的馈电电流大小相等,而相位以相同的比例递增或递减。图8-11N元均匀直线阵50.二、均匀直线阵所谓均匀直线式天线阵图8-11所示为一个元均匀直线阵,相邻两单元天线间的距离为,电流相位差为。类似于二元阵,相邻两单元天线间的相位差为(8-46)则在观察点的合成电场强度为

利用等比级数求和公式,可得(8-47)

式中,为元均匀直线阵的阵因子。51.图8-11所示为一个元均匀直线阵,相邻两单元根据,可以得到阵因子达到最大值的条件是:。由式(8-47)知,时各单元天线在观察点的电场同相叠加,得到最大值。由式(8-46)可求出阵因子达到最大值的角度(8-48)由此可见,阵因子的最大辐射方向取决于单元天线之间的电流相位差和间距。如果不考虑单元天线的方向性或单元天线的方向性很弱,那么天线阵的方向性主要决定于阵因子。若电源天线的电流相位差是可调的,那么天线阵的最大辐射方向也是可调的,这就是相控阵天线的工作原理。若均匀直线阵各单元天线同相馈电时,即时,由式(8-48)得52.根据,可以得到阵因子达到最大值的条件

(8-49)由此可见:天线阵的最大辐射方向垂直于天线阵的轴线,即天线阵的最大辐射方向在天线阵轴线的两侧,所以称之为侧射式天线阵。图8-12为间距的四元侧射式天线阵的阵因子方向图。0o30o60o90o120o150o180o210o240o270o300o330o0

y

z图8-12四元侧射式天线阵的阵因子方向图53.

若均匀直线阵各单元天线之间的电流相位差时,由式(8-46)得(8-50)天线阵的最大辐射方向在天线阵的轴线方向,称之为端射式天线阵。图8-13为间距的八元端射式天线阵的阵因子方向图。0o30o60o90o120o150o180o210o240o270o300o330o0

yz图8-13八元端射式天线阵的阵因子方向图54.若均匀直线阵各单元天线之间的电流相位差时,

第八章电磁波辐射55.第八章电磁波辐射1.

第六章讨论了电磁波在无界空间的传播问题和在分界面上的反射与透射问题,第七章讨论了电磁波在均匀导波系统内的传播问题,所有这些讨论都是假定电磁波已经建立,那么电磁波究竟是如何产生的呢?本章将着手讨论该问题。

产生电磁波的振荡源一般称为天线。对于天线,所关心的是它的辐射场强、方向性、辐射功率和效率等。56.第六章讨论了电磁波在无界空间的传播问题和

天线按结构可分为线天线和面天线两大类,线状天线如八木天线、拉杆天线等称为线天线,面状天线如抛物面天线等称为面天线。本章将首先从滞后位出发,根据矢量位求电流元和电流环产生的电磁场,再介绍天线的电参数和一些常用的天线。57.天线按结构可分为线天线和面天线两大类,线8.1电流元的辐射

如图8-1所示,设一个时变电流元位于坐标原点,沿Z轴放置,空间的媒质为线性均匀各向同性的理想介质。所谓电流元是指很短,沿上的电流振幅相等,相位相同。由第五章介绍的滞后位知:电流元产生的矢量位为(8-1)lI图8-1电流元的坐标58.8.1电流元的辐射如图8-1所示,设一个利用球坐标与直角坐标单位矢量之间的互换关系式(1-20),可得矢量位在球坐标系中的三个分量为

(8-2)则电流元产生的磁场强度为将式(8-2)代入上式,得59.利用球坐标与直角坐标单位矢量之间的互换关系式5.

(8-3)将式(8-3)代入麦克斯韦方程,得其中

(8-4a)(8-4b)(8-4c)

60.6.下面分别讨论电流元附近和远距离处的电磁场表达式。这里所讲的远近是相对于波长而言的,距离远小于波长的区域称为近区,反之,距离远大于波长的区域称为远区。(1)当,即或时,,那么由式(8-3)和式(8-4)得(8-5a)(8-5b)(8-5c)61.下面分别讨论电流元附近和远距离处的电磁场表达式。这里所讲

从以上结果可以看出,式(8-5a)与恒定电流元产生的磁场相同。考虑到,式(8-5b)和式(8-5c)与电偶极子产生的静电场相同。所以可把时变电流元产生的近区场称为似稳场。由式(8-5)还可以看出,电场与磁场的相位差为,平均能流密度矢量

这表明近区场没有电磁能量向外辐射,能量被束缚在源的周围,因此近区场又称为束缚场。62.从以上结果可以看出,式(8-5a)与恒定电流元产生(2)当,即或时,式(8-3)和式(8-4)中的及其高次项可以忽略,并将代入得(8-6a)(8-6b)式中为媒质的本质阻抗。由上式可见,电流元产生的远区场具有如下特点:

(a)在远区,平均能流密度矢量

这表明有电磁能量沿径向辐射,所以远区场又称为辐射场。63.(2)当,即或时,

(b)远区电场与磁场相互垂直,且与传播方向垂直,电场与磁场的比值等于媒质的本质阻抗,即。

(c)远区电磁场只有横向分量,在传播方向上的分量等于零,所以远区场为TEM波。

(d)远区场的振幅不仅与距离有关,而且还与观察点的方位有关,即在离开电流元一定距离处,场强随角度变化的函数称为方向图函数,用表示。由式(8-6)可见,沿Z轴放置的电流元的方向图函数为,在电流元的轴线方向上辐射为零,在垂直于电流元轴线的方向上辐射最强。电流元的辐射场强与方位角无关。64.(b)远区电场与磁场相互垂直,且与传播方向垂直,电

下面讨论电流元在远区产生的辐射功率。用一个球面将电流元包围起来,电流元的辐射功率将全部穿过球面,则电流元产生的总辐射功率为

将代入上式,可得自由空间中电流元的辐射功率为(8-7)此辐射功率是由与电流元相连的电源供给的,可用一个电阻上的消耗功率来等效,则此等效电阻称为辐射电阻。65.下面讨论电流元在远区产生的辐射功率。用一个球面将

根据和式(8-7),可得电流元的辐射电阻为(8-8)辐射电阻是用来衡量天线的辐射能力的,辐射电阻越大意味着天线向外辐射的功率越大,天线的辐射能力越强。66.根据12.8.2天线的电参数

一、方向图函数和方向图在离开天线一定距离处,辐射场在空间随角度变化的函数称为天线的方向图函数,用表示。根据方向图函数绘制的图形称为天线的方向图。由于天线的辐射场分布在整个空间,所以天线的方向图通常是一个三维的立体图形。要绘制这样的三维立体方向图是不方便的,通常工程上采用两个相互垂直的主平面上的方向图来表示,即E面方向图和H面方向图。67.8.2天线的电参数一、方向图函数和方向图13.E面是指电场强度矢量所在并包含最大辐射方向的平面,H面是指磁场强度矢量所在并包含最大辐射方向的平面。对于上节介绍的电流元,其方向图函数为。采用极坐标,以为变量,在等于常数的平面内,方向图函数的变化轨迹为两个圆,如图8-2a所示。由于方向图函数与无关,所以在的平面内,方向图函数的变化轨迹为一个圆,如图8-2b所示。电流元的立体方向图如图8-2c所示。68.E面是指电场强度矢量所在并包含最大辐射方向的平面,H面是图8-2a电流元E面方向图图8-2b电流元H面方向图xyz图8-2c电流元立体方向图69.图8-2a电流元E面方向图图8-2b电流元H面方向图xyz实际天线的方向图要比图8-2复杂。图8-3为某天线的方向图,它有很多波瓣,分别称为主瓣、副瓣和后瓣。其中最大辐射方向的波瓣称为主瓣,其他波瓣统称为副瓣,把位于主瓣正后方的波瓣称为后瓣。主瓣第一副瓣后瓣主轴图8-3天线方向图的一般形状70.实际天线的方向图要比图8-2复杂。图8-3为某

主瓣最大辐射方向两侧的两个半功率点(即场强为最大值的倍)之间的夹角,称为主瓣宽度,也称半功率波瓣宽度,用或表示。主瓣宽度愈小,天线辐射的电磁能量愈集中,定向性愈好。在主瓣最大方向两侧,两个零辐射方向之间的夹角,称为零功率波瓣宽度,用表示。由图8-2可见,电流元的主瓣宽度,零功率波瓣宽度。71.主瓣最大辐射方向两侧的两个半功率点(即场强

副瓣最大辐射方向上的功率密度与主瓣最大辐射方向上的功率密度之比的对数值,称为副瓣电平,用dB表示。通常离主瓣近的副瓣电平要比远的高,所以副瓣电平通常是指第一副瓣电平。一般要求副瓣电平尽可能低。

主瓣最大辐射方向上的功率密度与后瓣最大辐射方向上的功率密度之比的对数值,称为前后比。前后比愈大,天线辐射的电磁能量愈集中于主辐射方向。72.副瓣最大辐射方向上的功率密度与主瓣最大辐

二、方向性系数为了从数量上说明天线辐射功率的集中程度,可用一个参数—方向性系数来衡量。方向性系数的定义为:在相等的辐射功率下,天线在其最大辐射方向上产生的功率密度与理想的无方向性天线在同一点产生的功率密度之比,即(8-9)式中和分别表示被研究天线的辐射功率密度和场强,和分别表示理想无方向性天线的辐射功率密度和场强。73.二、方向性系数19.

天线的方向性系数也可以定义为:在天线最大辐射方向上产生相等电场强度的条件下,理想的无方向性天线所需的辐射功率与被研究天线的辐射功率之比,即(8-10)对于被研究的天线,其辐射功率

(8-11)74.天线的方向性系数也可以定义为:在天线最大辐射方向

式中,为归一化的方向图函数,其定义为

为方向图函数的最大值。对于理想的无方向性天线,其辐射功率为(8-12)将式(8-11)和(8-12)代入式(8-10)得(8-13)由上式可以求得电流元的方向性系数为1.5。75.式中,为归一化的方向图函数,其定义为21.

三、辐射效率实际使用的天线均具有一定的损耗,根据能量守恒定律,天线的输入功率一部分向空间辐射,一部分被天线自身消耗。因此,实际天线的输入功率大于辐射功率。天线的辐射功率与输入功率之比称为天线的辐射效率,用表示,即

(8-14)76.三、辐射效率22.四、增益系数方向性系数是表征天线辐射电磁能量的集中程度,辐射效率则是表征天线的能量转换效率,将两者结合起来就可以得到天线的另一个参数—增益系数,其定义为:在相同的输入功率下,天线在其最大辐射方向上产生的功率密度与理想的无方向性天线在同一点产生的功率密度之比,即

(8-15)77.四、增益系数23.

增益系数也可以定义为:在天线最大辐射方向上产生相等电场强度的条件下,理想的无方向性天线所需的输入功率与被研究天线的输入功率之比,即(8-16)若假定理想的无方向性天线的效率,那么由上述关系,可得(8-17)78.增益系数也可以定义为:在天线最大辐射方向上产生相

8.3电流环的辐射如图所示,一个半径为(),载有电流的细导线圆环,通常称之为电流环或磁偶极子。此时可认为流过电流环的电流大小和相位处处相等。

为了简单起见,把观察点放在平面,即平面上,不失一般性。电流环的矢量位(8-18)yxra79.8.3电流环的辐射yxra25.由【例3-2】知: (8-19)

因为,将上式展开为泰勒级数,取前两项,得

80.由【例3-2】知:26.因为,所以

则(8-20)

将式(8-19)和式(8-20)代入式(8-18),得(8-21)81.因为,所以27.根据,求得电流环产生的磁场为(8-22a)(8-22b)(8-22c)再根据麦克斯韦方程,可得电流环产生的电场为(8-23a)(8-23b)82.根据,求得电流环产生的磁场为28对于电流环感兴趣的是其远区场,因,由式(8-22)和式(8-23)得

(8-24a)

(8-24b)式中。上式表明电流环产生的远区电场与磁场相互垂直,且与波的传播方向垂直。83.对于电流环感兴趣的是其远区场,因,电流环的平均功率密度为

(8-25)辐射功率为

(8-26)利用关系式,可得电流环的辐射电阻为(8-27)84.电流环的平均功率密度为30.8.4缝隙的辐射如图8-5所示,在无限大且无限薄的理想导体平面上开一个窄缝隙,缝隙的长度,宽度。当缝隙被激励后,会向外辐射电磁能量而形成一个辐射单元。在高速飞行器上使用这种辐射单元组成的天线,由于它与飞行器的结构共形,因而不会妨碍飞行器的高速飞行。85.8.4缝隙的辐射如图8-5所示,在无限大且无限

在高频电源的激励下,缝隙中将会产生电场,由于,再忽略缝隙两端的边缘效应,可以认为缝隙中的电场是均匀的。根据理想导体的边界条件,在平面上缝隙以外区域,电场的切向分量

图8-5缝隙的结构yzxld图8-6磁流元86.在高频电源的激励下,缝隙中将会产生电场,由

为零,缝隙中电场的切向分量。在的半空间,缝隙相当于一个等效磁流元,其等效磁流密度为(8-28)也就是说,缝隙可以被等效为一个片状的沿轴放置的线磁流元,如图8-6所示。根据与全电流定律对偶的全磁流定律(8-29)积分路径紧贴着磁流源,可得等效磁流强度为(8-30)87.为零,缝隙中电场的切向分量。在的半空间,缝隙相当根据电流元的远区辐射场公式(8-6)和对偶原理,可得磁流元的辐射场为(8-31a)(8-31b)将式(8-30)代入上式,得缝隙在半空间的辐射场为(8-32a)(8-32b)88.根据电流元的远区辐射场公式(8-6)和对偶原理,可得磁在的半空间,由于等效磁流与半空间的等效磁流大小相等方向相反,所以缝隙在半空间的辐射场为式(8-32)的负值。缝隙的总辐射功率和辐射电阻分别为

(8-33)(8-34)89.在的半空间,由于等效磁流与半空间的等效磁流大小8.5对称振子天线对称振子天线是由两段同样粗细和等长的导线构成,在两段导线中间的两个端点对称馈电,如图8-7所示。振子两臂的长为,半径为。ll

azyx图8-7对称振子天线90.8.5对称振子天线对称振子天线是由两段同样粗细对称振子天线是一种最基本最常用的线天线,既可以单独使用,也可以作为阵列天线的组成单元。知道对称振子天线上的电流分布,就可以求出其辐射场。要精确计算对称振子天线上的电流分布,需要采用数值分析方法,计算比较麻烦。实际上,对称振子可以看成是由终端开路的平行双线张开而成,理论和实验均表明,细对称振子的电流分布可以认为具有正弦驻波分布。设对称振子沿Z轴放置,馈电中心位于坐标原点,如图8-8所示,则对

91.对称振子天线是一种最基本最常用的线天线,既可以单称振子上的电流分布可以表示为(8-35)式中为电流波幅,。zyxPrdz'z'z'cosr'图8-8对称振子的辐射场92.称振子上的电流分布可以表示为zyxPrdz'z'z'c

将对称振子看成是由许多电流振幅不同相位相同的电流元组成。根据叠加原理,对称振子在空间P点的辐射场就等于这些电流元在该点的辐射场的叠加。根据式(8-6),电流元产生的远区辐射场为(8-36)由于,可以认为,在计算电流元至观察点的距离时,可近似认为,在计算电流元至观察点的相位差时,。那么对称振子的远区电场为93.将对称振子看成是由许多电流振幅不同相位相

(8-37)根据方向图函数的定义,可得对称振子天线的方向图函数为(8-38)由此可见,沿Z轴放置的对称振子天线的方向图函数与方位角无关,仅与方位角和振子长度有关。94.40.图8-9绘出了几种不同长度的对称振子在天线所在平面内的方向图,将这些平面方向图沿Z轴旋转一周即构成空间方向图。由图可见,无论对称振子的长度如何,天线在和的轴线方向上都没有辐射,这是因为每个电流元在轴线方向上辐射为零。当天线的长度时,振子臂上的电流是同相的,在上辐射场是同相叠加,合成场强最强,所以的方向为主辐射方向。当天线的长度时,振子臂上出现反向电流,出现了副瓣。95.图8-9绘出了几种不同长度的对称振子在天线所在平2l=/2图8-9几种对称振子天线的方向图96.2l=/2图8-9几种对称振子天线的方向图42.长度为半个波长的对称振子天线称为半波天线。将代入式(8-38),得半波天线的方向图函数为(8-39)由式(8-37)得半波天线的远区电场为

(8-40)因此,半波天线的辐射功率97.长度为半个波长的对称振子天线称为半波天线。将

(8-41)

由此可得半波天线的辐射电阻为(8-42)98.44.上式中的积分用数值方法求得其值约为1.218,那么半波天线的辐射电阻为

由式(8-13)可求得半波天线的方向性系数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论