




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
chapter1&3Scopeandenvironmentoffinancialmanagementchapter1&31一二请在这里输入您的主要叙述内容整体概述三请在这里输入您的主要叙述内容请在这里输入您的主要叙述内容一二请在这里输入您的主要叙述内容整体概述三请在这里输入您的主2DevelopmentofFinancialManagementEarly20thcentury:Concentratedonreportingtooutsiders.Early21stcentury:Insidersmanagingandcontrollingthefirm’sfinancialoperations.DevelopmentofFinancialManag3Attheturnofthetwentiethcenturyfinancialtopicsfocusedontheformationofnewcompaniesandtheirlegalregulationandtheprocessofraisingfundsinthecapitalmarkets.Thecompany’ssecretarywasinchargeofraisingfundsandproducingtheannualreports,aswellastheaccountingfunction.Attheturnofthetwentiethc4BusinessfailuresduringtheGreatDepressionofthe1930shelpedchangethefocusoffinance.Increasedemphasiswasplacedonbankruptcy,liquiditymanagementandavoidanceoffinancialproblems.BusinessfailuresduringtheG5AfterWorldWarⅡtheemphasisofcorporatefinanceswitchedfromfinancialaccountingandexternalreportingtocostaccountingandreportingandfinancialanalysisonbehalfofthefirm’smanagers.Thatis,theperspectiveoffinancechangedfromreportingonlytooutsiderstothatofaninsiderchargedwiththemanagementandcontrolofthefirm’sfinancialoperations.AfterWorldWarⅡtheemphasis6Capitalbudgetingbecameamajortopicinfinance.Thisledtoanincreasedinterestinrelatedtopics,mostnotablyfirmvaluation.Interestinthesetopicsgrewandinturnspurredinterestinsecurityanalysis,portfoliotheoryandcapitalstructuretheory.Capitalbudgetingbecameamaj7ChiefAccountantCorporateTreasurerTypicalFinanceStructureChiefFinancialOfficerChiefAccountantCorporateTrea8Chiefaccountantisalsocalledfinancialcontroller,whoseresponsibilitiesincludefinancialreportingtooutsidersaswellascostandmanagerialaccountingandfinancialanalysisonbehalfofthefirm’smanagers.Corporatetreasurerisinchargeofraisingfunds,managingliquidityandbankingrelationshipsandcontrollingrisks.Chiefaccountantisalsocalle9FinancialGoaloftheFirmProfitmaximisation?Inmicroeconomicscoursesprofitmaximisationisfrequentlygivenasthefinancialgoalofthefirm.Profitmaximisationfunctionslargelyasatheoreticalgoal.
FinancialGoaloftheFirmProf10Problems:UNCERTAINTYofreturnsTIMINGofreturns
Problems:11Shareholderwealthmaximisation?
Sameas:MaximisingfirmvalueMaximisingsharevaluesShareholderwealthSameas:12Ittakesintoaccountuncertaintyorrisk,time,andotherfactorsthatareimportanttotheowners.Butmanythingsaffectshareprices.Difficulty:TheagencyproblemIttakesintoaccountuncertai13AgencyproblemTheagencyproblemreferstothefactthatafirm’smanagerswillnotworktomaximisebenefitstothefirm’sownersunlessitisinthemanagers’interesttodoso.Thisproblemistheresultofaseparationofthemanagementandownershipofthefirm.AgencyproblemTheagencyprobl14AgencyCostsThecosts,suchasreducedshareprice,associatedwithpotentialconflictbetweenmanagersandinvestorswhenthesetwogroupsarenotthesame.AgencyCostsThecosts,suchas15Inordertolessentheagencyproblem,somecompanieshaveadoptedpracticessuchasissuingstockoptions(shareoptions)totheirexecutives.Inordertolessentheagency16FinancialDecisionsandRisk-returnRelationshipsAlmostallfinancialdecisionsinvolvesomesortofrisk-returntrade-off.Themoreriskthefirmiswillingtoassume,thehighertheexpectedreturnfromagivencourseofaction.FinancialDecisionsandRisk-r17RiskandReturnsRiskExpectedReturnsRiskandReturnsRiskExpectedR18WhyPricesReflectValueEfficientMarketsMarketsinwhichthevaluesofallassetsandsecuritiesatanyinstantintimefullyreflectallavailableinformation.AssumptionWhyPricesReflectValueEffici19OrganisationalFormsSoleproprietorshipsPartnershipsCompaniesOrganisationalFormsSolepropr20NatureoftheorganisationalformsSoleproprietorshipOwnedbyasingleindividualAbsenceofanyformallegalbusinessstructureTheownermaintainstitletotheassetsandispersonallyresponsible,generallywithoutlimitation,fortheliabilitiesincurred.Theproprietorisentitledtotheprofitsfromthebusinessbutalsoabsorbanylosses.Natureoftheorganisationalf21PartnershipTheprimarydifferencebetweenapartnershipandasoleproprietorshipisthatthepartnershiphasmorethanoneowner.Eachpartnerisjointlyandseverallyresponsiblefortheliabilitiesincurredbythepartnership.Partnership22CompanyAcompanymayoperateabusinessinitsownright.Thatis,thisentityfunctionsseparatelyandapartfromitsowners.Theownerselectaboardofdirectors,whosemembersinturnselectindividualstoserveascorporateofficers,includingthemanagerandthecompanysecretary.Theshareholder’sliabilityisgenerallylimitedtotheamountofhisorherinvestmentinthecompany.Company23Limitedcompany(Ltd)andproprietarylimitedcompany(PtyLtd)Ltdcompaniesaregenerallypubliccompanieswhosesharesmaybelistedonastockexchange,ownershipinsuchsharesbeingtransferablebypublicsalethroughtheexchange.PtyLtdcompaniesarebasicallyprivateentities,asthesharescanonlybetransferredprivately.Limitedcompany(Ltd)andprop24ComparisonofOrganisationalformsOrganisationrequirementsandcostsLiabilityofownersContinuityofbusinessTransferabilityofownershipManagementcontrolEaseofcapitalraisingIncometaxesComparisonofOrganisationalf25TheflowoffundsSavingsdeficitunitsSavingssurplusunitsFinancialmarketsfacilitatetransfersoffundsfromsurplustodeficitunitsDirectflowsoffindsIndirectflowsoffundsTheflowoffundsSavingsdefic26DirecttransferoffundsCashSecuritiessaversfirmsDirecttransferoffundsCashSe27TypesofsecuritiesTreasuryBillsandTreasuryBondsCorporateBondsPreferredSharesOrdinarySharesRisk?HighReturns?Relationship?TypesofsecuritiesTreasuryBi28Broking&
investmentbankingHowdobrokers
/investmentbankershelpfirmsissuesecurities?AdvisingthefirmUnderwritingtheissueDistributingtheissueEnhancingCredibilityBroking&
investmentbankingHo29IndirecttransferoffundsIntermediarySecuritiesFirmSecuritiesfinancialintermediaryfirmssaversFundsFundsIndirecttransferoffundsInte30ComponentsoffinancialmarketsPrimaryandsecondarymarketsCapitalandmoneymarketsForeign-exchangemarketsDerivativesmarketsStockexchangemarketsComponentsoffinancialmarket31Primaryand
secondarymarketsPrimarymarketsSellingofnewsecuritiesFundsraisedbygovernmentsandbusinessesSecondarymarketsResellingofexistingsecuritiesAddsmarketabilityandliquiditytoprimarymarketsReducesriskonprimaryissuesFundsraisedbyexistingsecurityholdersPrimaryand
secondarymarketsP32Capital&moneymarketsCapitalmarketsMarketsinlong-termfinancialinstrumentsByconvention:termsgreaterthanoneyearLong-termdebtandequitymarketsBonds,shares,leases,convertiblesMoneymarketsMarketsinshort-termfinancialinstrumentsByconvention:termslessthanoneyearTreasurynotes,certificatesofdeposit,commercialbills,promissorynotesCapital&moneymarketsCapital33ReviewsIntroducethehistoryoffinancialmanagementUnderstandthefinancialgoalofdecision-makingUnderstandthelimitationsofagoalofprofitmaximisationIntroducerisk-returntrade-offofdecisionsIntroducemarketefficiencyDistinguishbetweentheformsofbusinessorganisationsUnderstandthefinancialmarketReviewsIntroducethehistory34EndofChapter1EndofChapter135Chapter4:MathematicsofFinance
Chapter4:MathematicsofFina36TheTimeValueofMoneyCompoundingandDiscounting:SinglesumsTodayFutureTheTimeValueofMoneyCompoun37Weknowthatreceiving$1todayisworthmorethan$1inthefuture.ThisisduetoOPPORTUNITYCOSTS.Theopportunitycostofreceiving$1inthefutureistheinterestwecouldhaveearnedifwehadreceivedthe$1sooner.TodayFutureWeknowthatreceiving$1toda38wecanMEASUREthisopportunitycostby:Translate$1todayintoitsequivalentinthefuture(COMPOUNDING).Translate$1inthefutureintoitsequivalenttoday(DISCOUNTING).??TodayFutureTodayFuturewecanMEASUREthisopportunit39Note:It’seasiesttouseyourfinancialfunctionsonyourcalculatortosolvetimevalueproblems.However,youwillneedalotofpracticetoeliminatemistakes.Note:It’seasiesttouseyour40FutureValueFutureValue41FutureValue-singlesums
Ifyoudeposit$100inanaccountearning6%,howmuchwouldyouhaveintheaccountafter1year?MathematicalSolution:FV1=PV(1+i)1=100(1.06)1
=$106
0 1PV=-100 FV=?FutureValue-singlesums
If42FutureValue-singlesums
Ifyoudeposit$100inanaccountearning6%,howmuchwouldyouhaveintheaccountafter2year?MathematicalSolution:FV2=FV1(1+i)1=PV(1+i)2=100(1.06)2
=$112.4
0 2PV=-100 FV=?FutureValue-singlesums
If43FutureValue-singlesums
Ifyoudeposit$100inanaccountearning6%,howmuchwouldyouhaveintheaccountafter3year?MathematicalSolution:FV3=FV2(1+i)1=PV(1+i)3=100(1.06)3
=$119.1
0 3PV=-100 FV=?FutureValue-singlesums
If44FutureValue-singlesums
Ifyoudeposit$100inanaccountearning6%,howmuchwouldyouhaveintheaccountafter4year?MathematicalSolution:FV4=FV3(1+i)1=PV(1+i)4=100(1.06)4
=$126.2
0 4PV=-100 FV=?FutureValue-singlesums
If45FutureValue-singlesums
Ifyoudeposit$100inanaccountearning6%,howmuchwouldyouhaveintheaccountafter5years?MathematicalSolution:FV5=FV4(1+i)1=PV(1+i)5=100(1.06)5
=$133.82
0 5PV=-100 FV=?FutureValue-singlesums
If46FutureValue-singlesums
Ifyoudeposit$100inanaccountearningi,howmuchwouldyouhaveintheaccountafternyears?MathematicalSolution:FVn=PV(1+i)n=PV(FVIFi,n
)
0 nPV=-100 FV=?FutureValue-singlesums
If47Example4.1Example4.2Example4.3Example4.4Example4.148Untilnowithasassumedthatthecompoundingperiodisalwaysannual.Butinterestcanbecompoundedonaquarterly,monthlyordailybasis,andevencontinuously.Example4.5Untilnowithasassumedthat49FutureValue-singlesums
Ifyoudeposit$100inanaccountearning6%withquarterlycompounding,howmuchwouldyouhaveintheaccountafter5years?MathematicalSolution:FV=PV(FVIFi,n
)FV=100(FVIF.015,20
)(can’tuseFVIFtable)FV=PV(1+I/m)mxNFV=100(1.015)20=$134.68
0 20PV=-100 FV=?FutureValue-singlesums
If50PresentValuePresentValue51Incompoundingwetalkedaboutthecompoundinterestrateandinitialinvestment;Indeterminingthepresentvaluewewilltalkaboutthediscountrateandpresentvalue.Thediscountrateissimplytheinterestratethatconvertsafuturevaluetothepresentvalue.Incompoundingwetalkedabout52Example4.7Example4.8Example4.753PresentValue-singlesums
Ifyouwillreceive$1005yearsfromnow,whatisthePVofthat$100ifyouropportunitycostis6%?MathematicalSolution:PV=FV/(1+i)n=100/(1.06)5=$74.73PV=FV(PVIFi,n
)=100(PVIF.06,5
)(usePVIFtable)=$74.73
0 5PV=? FV=100PresentValue-singlesums
If54
0 5PV=5,000 FV=11,933PresentValue-singlesums
Ifyousoldlandfor$11,933thatyoubought5yearsagofor$5,000,whatisyourannualrateofreturn?0 55MathematicalSolution:PV=FV(PVIFi,n)5,000=11,933(PVIF?,5)PV=FV/(1+i)n5,000=11,933/(1+i)5
.419=((1/(1+i)5)2.3866=(1+i)5(2.3866)1/5=(1+i)i=0.19MathematicalSolution:56Example4.9Example4.957TheTimeValueofMoneyCompoundingandDiscountingCashFlowStreams01234TheTimeValueofMoneyCompoun58AnnuitiesAnnuity:asequenceofequalcashflows,occurringattheendofeachperiod.01234AnnuitiesAnnuity:asequence59ExamplesofAnnuities:Ifyoubuyabond,youwillreceiveequalcouponinterestpaymentsoverthelifeofthebond.Ifyouborrowmoneytobuyahouseoracar,youwillpayastreamofequalpayments.ExamplesofAnnuities:Ifyoub60FutureValue-annuity
Ifyouinvest$1,000attheendofthenext3years,at8%,howmuchwouldyouhaveafter3years?
0 1 2 3
1000 1000 1000FutureValue-annuity
Ifyou61MathematicalSolution:FV=PMT(FVIFAi,n
)FV=1,000(FVIFA.08,3
)(useFVIFAtable,or)FV=PMT(1+i)n-1 iFV=1,000(1.08)3-1=$3246.40 0.08MathematicalSolution:62Example4.11Example4.1163PresentValue-annuity
WhatisthePVof$1,000attheendofeachofthenext3years,iftheopportunitycostis8%?
0 1 2 3
1000 1000 1000PresentValue-annuity
Whati64MathematicalSolution:PV=PMT(PVIFAi,n
)PV=1,000(PVIFA.08,3
)(usePVIFAtable,or) 1PV=PMT1-(1+i)n
i 1PV=10001-(1.08)3 =$2,577.10 .08MathematicalSolution:65Example4.12Example4.1266Interpolationwithinfinancialtables:findingmissingtablevaluesExample1:PV=1000(PVIFA2.5%,6)Example2:1000=100(PVIFA?%,12months)Interpolationwithinfinancial67PerpetuitiesSupposeyouwillreceiveafixedpaymenteveryperiod(month,year,etc.)forever.Thisisanexampleofaperpetuity.Youcanthinkofaperpetuityasanannuitythatgoesonforever.PerpetuitiesSupposeyouwillr68PresentValueofaPerpetuityWhenwefindthePVofanannuity,wethinkofthefollowingrelationship:
PV=PMT(PVIFAi,n)PresentValueofaPerpetuityW69Mathematically,(PVIFAi,n)=Wesaidthataperpetuityisanannuitywheren=infinity.Whathappenstothisformulawhenngetsvery,verylarge?Mathematically,701-1(1+i)niWhenngetsverylarge,
1we’releftwithPVIFA= i1-1(1+i)niWhenngetsver71PMTiPV=So,thePVofaperpetuityisverysimpletofind:PV=PMT/iPresentValueofaPerpetuityPMTiPV=So,thePVofaperp72Whatshouldyoubewillingtopayinordertoreceive$10,000annuallyforever,ifyourequire8%peryearontheinvestment?PMTiPV==$10,000
0.08=
$125,000Whatshouldyoubewillingto73Example4.13Example4.1374OtherCashFlowPatterns0123OtherCashFlowPatterns012375$1000$1000$100045678OrdinaryAnnuityversusDueAnnuity$1000$1000$1000476Earlier,weexaminedthis“ordinary”annuity:Usinganinterestrateof8%,wefindthat:TheFutureValue(at3)is$3,246.40.ThePresentValue(at0)is$2,577.10.
0 1 2 3 1000 1000 1000Earlier,weexaminedthis“ord77Whataboutthisannuity?Same3-yeartimeline,Same3$1000cashflows,butThecashflowsoccuratthebeginningofeachyear,ratherthanattheendofeachyear.Thisisan“annuitydue.”
0 1 2 3
1000 1000 1000Whataboutthisannuity?Same378
0 1 2 3
-1000 -1000 -1000FutureValue-annuitydue
Ifyouinvest$1,000atthebeginningofeachofthenext3yearsat8%,howmuchwouldyouhaveattheendofyear3?
0 1 2 379MathematicalSolution:
SimplycompoundtheFVoftheordinaryannuityonemoreperiod:FV=PMT(FVIFAi,n
)(1+i)FV=1,000(FVIFA.08,3
)(1.08) (useFVIFAtable,or)FV=PMT(1+i)n–1(1+i) iFV=1,000(1.08)3-1(1.08)=$3,506.11 0.08MathematicalSolution:80
0 1 2 3
10001000 1000PresentValue-annuitydue
WhatisthePVof$1,000atthebeginningofeachofthenext3years,ifyouropportunitycostis8%?
0 1 2 381MathematicalSolution:
SimplycompoundtheFVoftheordinaryannuityonemoreperiod:PV=PMT(PVIFAi,n
)(1+i)PV=1,000(PVIFA.08,3
)(1.08) (usePVIFAtable,or) 1PV=PMT1-(1+i)n(1+i) i 1PV=10001-(1.08)3(1.08) =2,783.26 0.08
MathematicalSolution:Simply82Isthisanannuity?HowdowefindthePVofacashflowstreamwhenallofthecashflowsaredifferent?(Usea10%discountrate).UnevenCashFlows01234-10,0002,0004,0006,0007,000Isthisanannuity?UnevenCash83UnevenCashFlowsSorry!There’snoquickieforthisone.Wehavetodiscounteachcashflowbackseparately.01234-10,0002,0004,0006,0007,000UnevenCashFlowsSorry!There84
period
CF
PV(CF)0 -10,000 -10,000.001 2,000 1,818.182 4,000 3,305.793 6,000 4,507.894 7,000 4,781.09PVofCashFlowStream:$4,412.9501234-10,0002,0004,0006,0007,000period CF PV(CF85RetirementExampleAftergraduation,youplantoinvest$400permonthinthestockmarket.Ifyouearn12%peryearonyourstocks,howmuchwillyouhaveaccumulatedwhenyouretirein30years?0123...360400400400400RetirementExampleAftergradua86MathematicalSolution:FV=PMT(FVIFAi,n
)FV=400(FVIFA.01,360
)(can’tuseFVIFAtable)FV=PMT(1+i)n-1 i
FV=400(1.01)360-1=$1,397,985.65 .01MathematicalSolution:87HousePaymentExampleIfyouborrow$100,000at7%fixedinterestfor30yearsinordertobuyahouse,whatwillbeyourmonthlyhousepayment?HousePaymentExampleIfyoubo88MathematicalSolution:PV=PMT(PVIFAi,n
)100,000=PMT(PVIFA.005833,360
)(can’tusePVIFAtable) 1PV=PMT1-(1+i)n
i
1100,000=PMT1-(1.005833)360 PMT=$665.30 0.005833 MathematicalSolution:89CalculatingPresentandFutureValuesforsinglecashflowsforanunevenstreamofcashflowsforannuitiesandperpetuitiesForeachproblemidentify:
i,n,PMT,PVandFVSummaryCalculatingPresentandFuture90chapter9Riskandratesofreturnchapter991Infinancialmarkets,firmsseekfinancingfortheirinvestmentsandshareholdersofacompanyachievemuchoftheirwealththroughsharepricemovements.Involvementwithfinancialmarketsisrisky.Thedegreeofriskvariesfromonefinancialsecuritytoanother.Infinancialmarkets,firmsse92ImportantprincipleReturnRiskAlmostalwaystrue:Thegreatertheexpectedreturn,thegreatertheriskImportantprincipleReturnRiskA931926-1999:theannualratesofreturninAmericanfinancialmarket1926-1999:theannualratesof94RatesofreturnHistoricalreturn ThereturnthatanassethasalreadyproducedoveraspecifiedperiodoftimeExpectedreturn ThereturnthatanassetisexpectedtoproduceoversomefutureperiodoftimeRequiredreturn Thereturnthataninvestorrequiresanassettoproduceifhe/sheistobeafutureinvestorinthatassetRatesofreturnHistoricalretu95RatesofreturnNominal TheactualrateofreturnpaidorearnedwithoutmakinganyallowanceforinflationReal ThenominalrateofreturnadjustedfortheeffectofinflationEffective Thenominalrateofreturnadjustedformorefrequentcalculation(orcompounding)thanonceperannumRatesofreturnNominal96Whenaninterestrateisquotedinfinancialmarketsitisgenerallyexpressedasanominalrate.Forexample,ifabankadvertisesthatitwillpayinterestof5%perannumondeposits,thisinterestrateismostlikelytobethenominalrate.Wheninflationisdeductedfromthisnominalrate,therealrateofinterestisobtained.(Butthisisnotexactlycorrect!)Tobemoreprecise,……Whenaninterestrateisquote97InterestratedeterminantsInterestRatesInterestratedeterminantsInte98AdjustingforinflationConceptually:Nominalinterestratei=RealinterestrateR+AnticipatedinflationraterMathematically:(1+i)=(1+R)(1+r)Þ
i=R+r+rRUsuallysmallandignoredAdjustingforinflationConcept99CalculatingexpectedreturnsStateofeconomyRecessionNormalBoomProbabilityP0.200.500.30ReturnAB4%10%14%-10%14%30%ExpectedreturnisjustaweightedaverageR*=P(R1)xR1+P(R2)xR2+…+P(Rn)xRnCalculatingexpectedreturnsSt100CasestudyStateofeconomyRecessionNormalBoomProbabilityP0.200.500.30ReturnAB4%10%14%-10%14%30%CompanyAR*=P(R1)xR1+P(R2)xR2+…+P(Rn)xRnRA*=0.2x4%+0.5x10%+0.3x14%=10%CasestudyStateofRecessionPro101CasestudyStateofeconomyRecessionNormalBoomProbabilityP0.200.500.30ReturnAB4%10%14%-10%14%30%CompanyBR*=P(R1)xR1+P(R2)xR2+…+P(Rn)xRnRB*=0.2x-10%+0.5x14%+0.3x30%=14%CasestudyStateofRecessionPro102Basedonlyonyourexpectedreturncalculations,whichcompanysharewouldyouprefer?Basedonlyonyourexpectedre103Theaboveexampleillustratesthat,
Althoughitisextremelydifficulttopredictwithaccuracywhatthereturnwillbeonaninvestment,whatwecandoismakepredictionsabouttherangeofreturns,theprobabilitywithwhichacertainreturnwilleventuateandhencethereturnthatwecouldexpecttoget.So,theexpectedrateofreturnmaybedefinedastheweightedaverageofallpossibleoutcomes!Theaboveexampleillustrates104HaveyouconsideredRISK?HaveyouconsideredRISK?105RiskWhatisrisk TheuncertaintyorvariabilityordispersionaroundthemeanvalueHowtomeasurerisk Variance,standarddeviation,betaHowtoreducerisk DiversificationHowtopricerisk Securitymarketline,CAPM,APTRiskWhatisrisk106ForaTreasurysecurity,whatistherequiredrateofreturn?Requiredrateofreturn=Risk-freerateofreturnReason:TreasurysecuritiesarefreeofdefaultriskForaTreasurysecurity,what107Foracompanysecurity,whatistherequiredrateofreturn?Requiredrateofreturn=Risk-freerateofreturnHowlargeariskpremiumshouldwerequiretobuyacorporatesecurity?+RiskpremiumForacompanysecurity,whati108Foracompanystock,whatistherequiredrateofreturn?Requiredrateofreturn=Risk-freerateofreturnHowlargeariskpremiumshouldwerequiretobuyastock?+RiskpremiumForacompanystock,whatist109ReturnRiskAlmostalwaystrue:Thegreatertheexpectedreturn,thegreatertheriskReturnRiskAlmostalwaystrue:1101926-1999:theannualratesofreturninAmericanfinancialmarket1926-1999:theannualratesof111Whatisrisk?ThepossibilitythatanactualreturnwilldifferfromourexpectedreturnUncertaintyinthedistributionofpossibleoutcomesWhatisrisk?Thepossibilityt112Uncertaintyinthedistributionofpossibleoutcomesreturn(%)Company2Company1return(%)Uncertaintyinthedistributio113Howdowemeasurerisk?Generalidea:Share’spricerangeoverthepastyearMorescientificapproach:Share’sstandarddeviationofreturnsStandarddeviationisameasureofthedispersionofpossibleoutcomesThegreaterthestandarddeviation,thegreatertheuncertainty,andtherefore,thegreatertheriskHowdowemeasurerisk?General114Standarddeviation–probabilitydata=(
Ri-
R*
)2P(
Ri
)sS
ni=1Standarddeviation–probabili115CalculatingStandarddeviationStateofeconomyRecessionNormalBoomProbabilityP0.200.500.30ReturnAB4%10%14%-10%14%30%RA=10%RB=14%CalculatingStandarddeviation116Casestudy=(
Ri-
R*
)2P(
Ri
)sS
ni=1CompanyA(4%-10%)2(0.2) =7.2(10%-10%)2(0.5) =0.0(14%-10%)2(0.3) =4.8 Variance=s2 =12.0Standarddeviation =Ö12.0=3.46%Casestudy=(Ri-R117Casestudy=(
Ri-
R*
)2P(
Ri
)sS
ni=1CompanyB(-10%-14%)2(0.2) =115.2(14%-14%)2(0.5) =0.0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医保基础政策解读考试题库:题库及答案
- 2025年小学语文毕业升学全真模拟卷(口语表达与文学素养训练试题)
- 2025年导游资格证考试笔试模拟试卷:旅游地理知识应用题
- 2025年司法考试刑法模拟检测试卷:刑法分则案例分析与应用
- 2025年成人高考《语文》古诗词《长恨歌》鉴赏练习题
- 2025年一建考试《机电工程管理与实务》工程经济与造价管理经典案例题库
- 2024年六安舒城万佛湖水源保护和旅游管理委员会国企招聘12人笔试参考题库附带答案详解
- 广州美术学院《国学典籍》2023-2024学年第二学期期末试卷
- 西安财经大学《信息产业MBA案例分析》2023-2024学年第二学期期末试卷
- 盐城幼儿师范高等专科学校《设计与市场》2023-2024学年第一学期期末试卷
- GB/T 12227-2005通用阀门球墨铸铁件技术条件
- GA/T 832-2014道路交通安全违法行为图像取证技术规范
- 以问题为导向的健康照顾教学课件
- 2021年湖北理工学院辅导员招聘考试题库及答案解析
- 消防设备设施维护保养台账
- 新版《土地开发整理项目预算定额标准》讲解
- 乌灵胶囊幻灯课件
- DBT29-265-2019 天津市市政基础设施工程资料管理规程
- DB44∕T 1188-2013 电动汽车充电站安全要求
- 环网柜出厂检验规范标准
- 人教统编版高中语文必修下册第八单元(单元总结)
评论
0/150
提交评论