




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IncentivesforCleanHydrogenProductionintheInflationReductionActAlanKrupnickandAaronBergmanReport22-13November2022IncentivesforCleanHydrogenProductionintheInflationReductionAct AAbouttheAuthorsAlanKrupnickisaseniorfellowatResourcesfortheFutureandanexpertontheoilandgassector,reducinggreenhousegasemissionsfromthisandtheindustrialsectors,andcost-benefitanalysis.Inparticular,Krupnick’srecentresearchfocusesongreenpublicprocurement,decarbonizedhydrogenandtaxcredits,anddevelopingmarketsforgreennaturalgas.HisportfolioalsoincludesguidingthevalueofinformationagendacoveredbyourVALUABLESinitiativewithNASA,thevaluationofreducingasthmarisks,estimatingthevalueofstatisticallife,andissuesofregulatoryreform.AaronBergmanisafellowatResourcesfortheFuture.PriortojoiningRFF,hewastheLeadforMacroeconomicsandEmissionsattheEnergyInformationAdministration(EIA),managingEIA’smodelinginthoseareas.BeforeworkingatEIA,BergmanspentoveradecadeinthepolicyofficeattheDepartmentofEnergy,workingonabroadarrayofclimateandenvironmentalpolicies.BergmanhasworkedintheWhiteHouseattheOfficeofScienceandTechnologyPolicy,managingtheQuadrennialEnergyReviewandhandlingthemethanemeasurementportfolio,andattheCouncilonEnvironmentalQuality,workingoncarbonregulation.Bergmanenteredthefederalgovernmentin2009asaScienceandTechnologyPolicyFellowwiththeAmericanAssociationfortheAdvancementofScience,afterworkinginhighenergyphysics.AboutRFFResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutioninWashington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFiscommittedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.SharingOurWorkOurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit/licenses/by-nc-nd/4.0/.ResourcesfortheFuture iContents1.Introduction12.HydrogenProductionBackground22.1.ProducingHydrogenfromHydrocarbons22.2.ProducingHydrogenfromWater43.TaxCreditChangesintheIRA43.1.TheHydrogenTaxCredit43.2.TheCarbonSequestrationTaxCredit63.3.TheImplicitCarbonPrice63.4.LifeCycleGreenhouseGasEmissions94.TheCostsandEmissionsofHydrogenProduction114.1.TheCostsofHydrogenProduction124.2.TheEmissionsfromHydrogenProduction145.TheImpactofIRATaxCreditsontheCostofHydrogen155.1.TheValueofthePTCversustheITC155.2.TheImpactofthePTC165.3.PerverseIncentivesandthe45QTaxCredit196.Sensitivities206.1.EmissionsRateSensitivities206.2.FuelPriceSensitivities227.TheHydrogenEconomy28IncentivesforCleanHydrogenProductionintheInflationReductionAct ii1.IntroductionCleanhydrogencanbeakeycomponenttodecarbonization,particularlyintheindustrialsector.Beyonditscurrentuseinchemicalsandrefining,hydrogenhaspotentialnewandexpandedusesin,forinstance,processheat,ironandsteel,electricitygenerationandtransportation.However,currenthydrogenproductiontechnologiesyieldsignificantcarbonemissions,andlittleeconomicincentivehasexistedtoexpandtheuseofhydrogentonewareas.Butthathasbeguntochange,withtheUSCongressrecentlyplacinglargebetsonafuturehydrogeneconomy.Lastyear’sInfrastructure,InvestmentandJobsAct(IIJA)contains$9.5billionfundingforhydrogen,including$8billionforhydrogenhubs.Andthisyear’sInflationReductionAct(IRA)containstwoprovisionsthatwillsubsidizecleanhydrogenproduction.Thefirstisanewtaxcredit(section45Vofthetaxcode)wherethevalueofthecreditisbasedonlifecycleemissions.Thesecondisasubstantialincreaseinthevalueoftheexistingtaxcreditforcarbonsequestration(section45Qofthetaxcode),whichisusedtomake“blue”hydrogen.Eachofthesetaxcreditscanreducethepricedifferencebetweencleanhydrogenandmorecarbon-intensivealternatives.Tobetterunderstandthecost-effectivenessofthesepolicies,thispricedifferencecanbeconvertedintoanimplicitcarbonprice.Aswewillsee,thevaluessoobtainedaresignificantlyhigherthanmanyestimatesofthesocialcostofcarbonandmaythusappearuneconomic.However,thegoalofthesetaxcreditsisnotsolelytocorrectforthelackofapriceoncarbonbutalsotoaidthedeploymentofnascenthydrogentechnologies.Suchdeploymentcanhavespillovereffects,disseminatingknowledgeandpotentiallyloweringcostsinthefuture,anadditionalexternalitythat,althoughdifficulttoquantify,mayjustifythehigherimplicitcarbonprices.Thesetaxcreditshavedifferentimpactsdependingontheformofhydrogenproduction.Fossil-fuelbasedproductiongenerallyusesnaturalgas(althoughitcanuseotherfuelsaswediscusslater).Thisprocessproducesgreenhousegasemissionsfromthecarbondioxidereleasedasthehydrogenisextractedfromthenaturalgas(orotherhydrocarbon).Tobecleanhydrogen,theseemissionsmustbecaptured.Ontheotherhand,electrolysis,theproductionofhydrogenfromwaterusingelectricity,producesnodirectgreenhousegasemissions.However,electrolysisconsumeslargeamountsofelectricitythatcanleadtobothhighcostsandhighlifecycleemissionsiftheelectricityispurchasedonthewholesalemarket.Costscouldbelowered,however,byusinglowercostelectricity,eitherthroughadirectconnectiontoageneratororbyonlyproducinghydrogenwhenthepriceofelectricityislow.Bothformsofhydrogenproductionarepotentiallyeligibleforthe45Vtaxcredit,buttheymustdemonstratelowlifecycleemissionstodoso,withthemagnitudeofthecreditdependingonthelevelofemissions.Inthecaseoffossil-fuelbasedproduction,beyondthedirectemissions,thelargestcomponentofthelifecycleemissionsisupstreammethaneleakage;forelectrolysis,itistheemissionsassociatedwithelectricityproduction.TheTreasuryDepartmentwillhavetoissuearegulationonhowtocalculatetheselifecycleemissions,whichwillhaveamajorimpactonthesubsidiesavailabletohydrogenproducersandthecompetitivenessofvariousformsofhydrogenproduction.IncentivesforCleanHydrogenProductionintheInflationReductionAct 1Incontrasttothe45Vtaxcredit,onlyhydrogenproducersusingcarboncapture,utilizationandstorage(CCUS)areeligibleforthe45Qtaxcredit.Thistaxcreditisavailableirrespectiveofthelifecycleemissionsand,aswewillsee,canbemorevaluablethanthe45Vtaxcredit.Producersarenotallowedtotakebothtaxcredits.WewillanalyzetheimpactsofthesetaxcreditsonthecostsofhydrogenproductionusingasetofhydrogenproductionmodelsfromtheNationalRenewableEnergyLaboratory(NREL).Wewillseethatthe45Qtaxcreditissufficienttomakesomeformsoffossilfuel–basedhydrogenproductioncompetitivewithcurrenthigh-emissionproductiononalevelizedcostbasis.Thehighcostofgridelectricityandtheassociatedemissions,ontheotherhand,makeithardforelectrolysistocompete.However,electrolyzersthatsourcecleanerandcheaperelectricitycanqualifyforhighlevelsofthe45Vtaxcreditandcompetewithfossil-fuelbasedhydrogenproduction.Inthelongrun,costsforelectrolyzersareexpectedtodecrease,andthegridshouldbelesscarbonintensive,makingelectrolyzerscompetitivemorebroadly.Inthisreport,wewillreviewvariousformsofhydrogenproductionandthechangestothetaxlawmadebytheInflationReductionAct.Wewillcalculatetheimplicitcarbonpricesanddiscussthecalculationoflifecycleemissions.Next,usingtheNRELmodels,wewilldiscusstheimpactsofthetaxcreditsonthelevelizedandmarginalcostsofhydrogenproductionandseehowtheydependonupstreammethaneleakageratesandthecarbonintensityofelectricityproduction.Wewillalsoexamineindetailhowtherelativecompetitivenessofthevariousformsofproductiondependsonnaturalgasandelectricityprices.Weconcludewithadiscussionofthebroaderhydrogeneconomy.2.HydrogenProductionBackgroundThetwoprimarymeansofhydrogenproductionusehydrocarbons(i.e.,fossilfuelsorbiomass)asafeedstockorsplitwaterusingelectricitythroughelectrolysis.Productionusinghydrocarbonsusesaseriesofchemicalreactionstoreleasethehydrogen,wheretheremainingcarbonatomsareusuallyreleasedascarbondioxide.Electrolysis,ontheotherhand,hasnodirectgreenhousegasemissionsbutrequiressignificantamountsofelectricity.2.1.ProducingHydrogenfromHydrocarbonsMosthydrogenproducedgloballyisthroughsteammethanereforming(SMR)whichfallsintothefirstcategory.SMRtakesmethane,theprimarycomponentofnaturalgas,andheatsitinthepresenceofsteamtocreateamixtureofcarbonmonoxideandhydrogen:CH4+H2OCO+3H2ResourcesfortheFuture 2Inadditiontoconsumingnaturalgasasafeedstock,thisreactionrequiresheatthatcanbeproducedbythecombustionofadditionalnaturalgas.Toproduceadditionalhydrogen,thereformingreactionisusuallyfollowedbyawater-gas-shiftreactionthatconvertsthecarbonmonoxidetocarbondioxideandadditionalhydrogen:CO+H2OCO2+H2Thisreactionisexothermic(i.e.,producesenergy),asopposedtotheSMRreaction,whichisendothermic(i.e.,usesenergy).Anotherhydrogenproductiontechnologyusingnaturalgasisautothermalreforming(ATR),whichmixesmethanewithoxygentoproduceheat,hydrogenandcarbonmonoxidethroughapartialoxidationreaction:2CH4+O22CO+4H2Theheatfromthisreactioncandrivethesteammethanereformingreactionabove.Theresultinggasisthenrunthroughawater-gasshiftreactiontoproducemorehydrogen.AnadvantageofATRoverSMRisthatitrequiresnoadditionalnaturalgas,asthepartialoxidationreactionprovidestheheat.ATRisnotwidelycommercialized.Hydrogenalsocanbeproducedfromcoalorbiomassthroughgasification,whichconvertsthefueltoamixtureofmostlycarbonmonoxideandhydrogengaswithsomeresidualmethaneandcarbondioxide,oftencalled“syngas.”1Afurtherwater-gas-shiftreactionproducesadditionalhydrogen.Gasifiersarecomplex,expensiveandultimatelyproducemorecarbondioxideemissionsthanSMRorATR.Inadditiontotheirdirectemissions,theseformsofhydrogenproductionhavelifecyclegreenhousegasemissionsfromupstreamfuelproduction,processinganddistribution.Theseincludethereleaseofmethanefromupstreamnaturalgasandcoalproductionandtransportationandtheemissionsassociatedwithanyelectricityused.Astraightforwardwaytolowertheemissionsfromthesetechnologiesistocapturethecarbondioxide,eitherfromtherelativelypureprocessemissionstreamorfromtheentireplant,resultingincarboncaptureofroughly55–70percentandupwardsof90percent,respectively.However,additionalenergyisrequiredtorunthecaptureequipment,partlymitigatingtheemissionsreductions.Thereareavarietyofmorenascenttechnologiestoproducehydrogenfromhydrocarbonsthatwewillnotdiscusshere./research/Coal/energy-systems/gasification/gasifipedia/intro-to-gasificationIncentivesforCleanHydrogenProductionintheInflationReductionAct 32.2.ProducingHydrogenfromWaterTheothermajormethodofproducinghydrogenisthroughelectrolysiswhereelectricityisusedtoseparatethehydrogenfromtheoxygeninwater:2H2O+electricity2H2+O2Whilelittlehydrogenisproducedthiswaytodaybecauseofitssignificantelectricityconsumptionandhighcost,electrolysishastheadvantageofproducingnodirectgreenhousegasemissions.Thethreemainelectrolysistechnologiesusedtodayarealkalineelectrolysis,protonexchangemembrane(PEM)electrolysisandsolidoxideelectrolysis.Thesetechnologiesdifferintheiruseofcatalysts,solutionsandinotheraspects,whilehavingthesamenetchemicalreaction.Importantly,solidoxideelectrolysis,whichhasnotyetbeencommercialized,requireshightemperaturesand,consequently,aheatsource.Othertechnologies,suchasphotoelectrochemicalwatersplitting,areunderdevelopment.2Whilethedirectgreenhousegasemissionsfromelectrolysisarezero,thelifecycleemissionscanbesignificantiftheelectricityconsumedhasahighcarbonintensity.Intheshortterm,upstreamemissionscanbereducedbyusingzero-emissionelectricity.Inthelongterm,weexpectthecarbonintensityoftheelectricgridtodecrease.TheBidenadministrationhassetagoalofazero-carbongridby2035.3.TaxCreditChangesintheIRAThetwoimportanttaxcreditsintheIRAforhydrogenarethenewtaxcreditforhydrogenproductionandtheincreaseinvalueoftheexistingcreditforcarbonsequestration.Wediscusseachoftheseprovisionsindetailinthissectionbeforeturningtotheireffectonhydrogenproduction.3.1.TheHydrogenTaxCreditTheIRAcreatesanewtaxcredit(26USC45V–45Vinwhatfollows)tosubsidizetheproductionof“clean”hydrogen.Hydrogenproducershavetheoptionofeitherreceivingacreditequaltoaspecifieddollarvalueperkilogramofhydrogenproduced(aproductiontaxcredit;PTC)orataxcreditequaltoaspecifiedfractionoftheircapitalexpenses(aninvestmenttaxcredit;ITC).Thesevaluesdependonthelifecyclegreenhousegasemissionsassociatedwiththehydrogenproductionandwhetherornotthehydrogenproducercomplieswiththeprevailingwageandapprenticeship/eere/fuelcells/hydrogen-production-photoelectrochemical-water-splittingResourcesfortheFuture 4requirementsinthebill.3Table1liststhevaluesforcomplyingproducers.Ifaproducerisnotincompliancewiththeserequirements,thecreditisreducedbyafactoroffive.Sincetheseprojectsmayalsobeeligiblefortax-exemptbonds,ifaprojectreceivessuchfinancing,theamountofcreditisreducedforboththeITCandPTC.Table1.Valuesofthe45VHydrogenInvestmentTaxCreditandProductionTaxCreditLifeCycleEmissions(kgCO2e/kgH2)ITCPercentagePTCValue(2022$/kgH2)4–2.56percent0.602.5–1.57.5percent0.751.5–0.4510percent1.000.45–030percent3.00InthecaseofthePTC,thetaxcreditisreceivedfor10yearsafterthefacilityisplacedintoservice.Nofacilitythatbeginsconstructionafter2032qualifies,butmodificationstofacilitiesinservicebefore2023canqualify.Nofacilitymaytakeboththe45Vandcarboncaptureandsequestrationtaxcredits.However,onecansimultaneouslytakethe45Vtaxcreditandmostoftheothertaxcreditsforcleanenergygeneration.TheIRAalsocontainsimportantprovisionstolettaxpayersmonetizethetaxcredit,allowingvarioustax-exemptentitiestoreceiveapaymentinsteadofataxcreditandallowingalltaxpayerstoreceivesuchapaymentforthePTCforthefirstfiveyears.4Inaddition,foralltaxpayers,thecreditistransferrableinreturnforcash,whichallowsmonetizationwithfewertransactioncostsascomparedtobringinginanoutsideinvestorwithtaxappetite(i.e.,apositivetaxbill).Unlikemanyothertaxcreditsinthisbill,therearenobonusesfordomesticcontentordevelopmentinenergycommunities.TheprevailingwagerequirementisthattheconstructionofthefacilityandanysubsequentalterationorrepairmustpayworkersatleastthelocalprevailingwagesforasimilaractivityasdeterminedbytheSecretaryofLaborundertheDavis-BaconAct.Withrespecttoapprenticeship,theIRArequiresthatapprenticessupplyupto15percentofthelaborhours,dependingonthefirstyearofconstruction.Theseapplytoanyfacilityoralterationorrepairofacomponentofafacilitythatbeginsconstruction60daysaftertheSecretaryoftheTreasuryissuesregulationsontheserequirements.Manydevelopersdonotpaytaxesinearlyyearseitherbecauseoftax-exemptstatusorbecauseofotherdeductions,suchasaccelerateddepreciation,andsocannottakeimmediateadvantageofthetaxcredit.IncentivesforCleanHydrogenProductionintheInflationReductionAct 53.2.TheCarbonSequestrationTaxCreditTheIRAalsosignificantlyincreasesthelevelofthetaxcreditforcarbonoxidesequestration.ThistaxcreditwascreatedintheEnergyImprovementandExtensionActof2008andsubsequentlymodifiedbytheBipartisanBudgetAct,whichincreasedthelevelofthecredit,replacedthepriortonnagecapwithafixeddurationof12yearsandexpandedeligibilitytoincludedirectaircapturewhilesettingvariouscapturethresholdsforqualificationdependingonthetypeoffacility.Inaddition,theBipartisanBudgetActaddedcarbonmonoxideasaneligiblegas,exceptinthecaseofdirectaircapture.WithmanyinindustryarguingthattheseincentivesweretoosmalltofosterwidespreaduseofCCUS,theIRAfurtherincreasedthelevelofthecreditforfacilitiesbuiltafterthepassageoftheBipartisanBudgetActtoaflat$85/tonneforsequesteredcarbondioxideand$60/tonneforutilizedcarbondioxide,includingforEOR,replacingthelinearlyrisingscaleintheBipartisanBudgetAct.5Inaddition,directaircaptureisgivenacreditof$180/tonneand$130/tonneforsequesteredandutilizedcarbon,respectively.However,muchlikeinthe45Vtaxcredit,thesevaluesaredividedbyfiveifprevailingwageandapprenticeshiprequirementsarenotmet.TheIRAalsochangestheeligibilityrequirementsasfollows:Adirectaircapturefacilitymustcaptureatleast1,000metrictonnesperyear.Anelectricgeneratormustcaptureatleast18,750metrictonnesperyearandhaveadesignedcapturerateofatleast75percentwithrespecttoabaseline.Anyotherfacilitymustcaptureatleast12,500metrictonnesperyear.Thesamereductionsfortax-exemptbondsasforthe45VPTCandthesameprovisionsthatallowdirectpaymentsalsoapplytothe45Qcredit.3.3.TheImplicitCarbonPriceThesesubsidiesreducethepricedifferencebetweencleanhydrogenandadirtieralternative.Theydosobydecreasingthepriceofthecleanenergy,incontrasttoacarbontax,whichincreasesthepriceofmorecarbon-intensiveenergy.Inthisway,onecanconvertthesubsidyintoanequivalentcarbonpriceasfollows.AssumewehaveadirtysourceofenergywithemissionsYd,andacleanenergysourcewithemissionsYc.Iftheper-unitsubsidyforcleaniss,thentofindtheequivalenttax,t,weneedtosolves=t(Yd-Yc)5 Thesevaluesarenominaluntil2026andthenrisewithinflation.ResourcesfortheFuture 6Thiscanberearrangedtogivet=s/(Yd-Yc),whichistheper-unitsubsidycostdividedbytheper-unitabatement.Whilewewillreportimpliedcarbonpricesinanumberofabatementscenarios,thesearenotmeasuresoftheabatementcostinthosescenarios.Instead,iftheactualabatementcostislowerthantheimpliedcarbonprice,thenitiseconomicforthechangetooccur.Inthiscase,theimpliedcarbonpriceisakindofmeasureofthecost-effectivenessofthepolicy.Tocalculatetheimplicitcarbonpriceforcurrentusesofhydrogen,wecancomparewithexistinghydrogenproduction,whichisnearlyalwaysanSMRprocess.Thishasalifecycleemissionsrateofroughly11.2kgCO2e/kgH2inthesemodels.ComparingwiththeemissionsratesinTable1givesimplicitcarbonpricesrangingfrom$84/tonneforhydrogenwithanemissionsrateof4kgCO2e/kgH2to$280/tonneforhydrogenwithanemissionsrateof0.45kgCO2e/kgH2.Inotherenduses,hydrogenmaybecompetingwithfuelssuchasnaturalgasinprocessheatormotorgasolineordieselfuelintransportation.Thecorrectunitstousearetheenergyservicesprovided.Forprocessheat,theimportantquantityisthepricetodeliveraJouleofheat.6Fornaturalgas,thissubsidyislargerthanforexistinghydrogenproduction,rangingfrom$134/tonneCO2eforhydrogenwithanemissionsrateof4kgCO2e/kgH2to$374/tonneCO2eforhydrogenwithanemissionsrateof0.45kgCO2e/kgH2.Fortransportation,thecorrectunitwilldependontheenduse.Forfreight,thisislikelyton-miles.Whilewedonothavedatafortheefficiencyofhydrogeninthatcontext,wecanlookatitsuseinpassengerfuelcellvehicles,wheretheappropriateunitisvehiclemilestraveled.The2022ToyotaMiraihasafuelefficiencyof72milesperkgH2.7Wecomparewithagasolinefueledcarthatachieves25mpg.Thisleadstoanimplicitcarbonpriceof$28–121/tonne.Foracarat55mpg,theimplicitcarbonpriceswillmorethandouble.Notethatthisdoesnotmeanthatthesubsidyismorelikelytoleadtoabatementinthatscenarioastheabatementcostindollarspertonnewillalsoincreasebecausetherearefeweremissionstobeabated.Figure1showsallofthesevalues.Thiscalculationignoresthatdifferentfuelscandeliverdifferentheatquality,suchasvaryingtemperature./feg/fcv_sbs.shtmlIncentivesforCleanHydrogenProductionintheInflationReductionAct 7Figure1.ImplicitCarbonTaxfor45VTaxCreditbyEndUseUnlikeacarbontax,whereeachtonneofgreenhousegasesemittedistaxed,the45Qpolicyinsteadsubsidizestheamountofsequesteredorutilizedemissions.Thus,whencomparingthepricedifferencebetweenthesameformofproductionwithandwithoutCCS,theimplicitcarbontaxisexactlythevalueofthesubsidy,whichis$85/tonneforsequesteredcarbondioxide.However,ifweinsteadcomparetonaturalgasusedforprocessheat(usingunitsofJoules),thatsubsidyincreasesto$169/tonne.Atthehighendoftheseranges,thevaluesarehigherthantheUSgovernment’sofficialof$51/tonne.TheyarealsohigherthanRFF’srecentlypublishedcentralvalueof$185/tonnealthoughnotmarkedlyso,andwellwithinthe95percentconfidenceintervalsandinlinewithhigherestimatesintheliterature.8Thismeansthat,evaluatedpurelyonthebasisofthebenefitsofthesepolicieswithrespecttocarbonabatement,theymaylookoverlyexpensive.However,asnotedabove,animportantexternalityexistsbeyondclimatechange:thepotentialspilloversfromtechnologydemonstrationanddeployment.Whilesuchanexternalityisextremelydifficulttoquantify,thelargersubsidiesherecouldpotentiallybejustifiedinthebroadercontextoftryingtocreateacleanhydrogeneconomy,aswediscusslater./articles/s41467-021-24487-wResourcesfortheFuture 83.4.LifeCycleGreenhouseGasEmissionsSincethevalueofthe45Vtaxcreditvariessignificantlydependingonthelifecycleemissions,howthisisdefinedhasverylargeimplicationsforthepotentialcompetitivenessofdifferentmeansofhydrogenproduction.Thiscanbeacomplexarea,sowequotetherelevantIRAprovisions(section13204):“(1)LIFECYCLEGREENHOUSEGASEMISSIONS.—INGENERAL.—Subjecttosubparagraph(B),theterm‘lifecyclegreenhousegasemissions’hasthesamemeaninggivensuchtermundersubparagraph(H)ofsection211(o)(1)oftheCleanAirAct(42U.S.C.7545(o)(1)),asineffectonthedateofenactmentofthissection.GREETMODEL.—Theterm‘lifecyclegreenhousegasemissions’shallonlyincludeemissionsthroughthepointofproduction(well-to-gate),asdeterminedunderthemostrecentGreenhousegases,RegulatedEmissions,andEnergyuseinTransportationmodel(commonlyreferredtoasthe‘GREETmodel’)developedbyArgonneNationalLaboratory,orasuccessormodel(asdeterminedbytheSecretary).”Section211(o)(1)oftheCleanAirActreferstotheRenewableFuelStandard(RFS):“Theterm‘lifecyclegreenhousegasemissions’meanstheaggregatequantityofgreenhousegasemissions(includingdirectemissionsandsignificantindirectemissionssuchassignificantemissionsfromlandusechanges),asdeterminedbytheAdministrator,relatedtothefullfuellifecycle,includingallstagesoffuelandfeedstockproductionanddistribution,fromfeedstockgenerationorextractionthroughthedistributionanddeliveryanduseofthefinishedfueltotheultimateconsumer,wherethemassvaluesforallgreenhousegasesareadjustedtoaccountfortheirrelativeglobalwarmingpotential.”Thisleavesanumberofissuesunresolved.WhiletheEPAhasissuedmanyrulemakingsondeterminingthelifecycleemissionsforvariousfuelsundertheRFS,theIRAgivestheSecretaryofTreasurydirectiontoissueitsownregulationsondetermininglifecyclegreenhousegasemissionswithinoneyearafte
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TY/T 3802.1-2024健身瑜伽运动装备使用要求和检验方法第1部分:瑜伽垫
- 安徽大学课题申报书
- 质量管理qc课题申报书
- 厅级课题申报书范本
- 量感培养课题立项申报书
- 云教学 课题申报书
- 司法课题申报书
- 济南课题申报书
- 办学特色课题申报书
- 压力管道维护维修合同范本
- 慢性心源性心脏病护理查房课件
- 项目维保投标方案技术标
- Zippo-2024年美版年册集合
- 重大隐患判定标准培训课件
- 安全生产法律法规培训课件1
- 教育的减法让孩子更幸福(课件)-小学生教育主题班会通用版
- 大格子作文纸模板
- 高中学生物理学情分析【3篇】
- 中考物理一轮复习策略与方法
- 祥云财富工业园区新建铁路专用线工程环评报告
- 急救车药品一览表
评论
0/150
提交评论