汽车设计课设驱动桥设计_第1页
汽车设计课设驱动桥设计_第2页
汽车设计课设驱动桥设计_第3页
汽车设计课设驱动桥设计_第4页
汽车设计课设驱动桥设计_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

汽车设计课程设计说明书题目:BJ130驱动桥部分设计验算与校核姓名:学号:专业名称:车辆工程指导教师:目录一、课程设计任务书⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1二、总体结构设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2三、主减速器部分设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21、主减速器齿轮计算载荷的确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22、锥齿轮主要参数选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43、主减速器强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5四、差速器部分设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61、差速器主参数选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62、差速器齿轮强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7五、半轴部分设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯81、半轴计算转矩Tφ及杆部直径⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯82、受最大牵引力时强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯93、制动时强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯94、半轴花键计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9六、驱动桥壳设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯101、桥壳的静弯曲应力计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102、在不平路面冲击载荷作用下的桥壳强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯113、汽车以最大牵引力行驶时的桥壳强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯114、汽车紧急制动时的桥壳强度计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125、汽车受最大侧向力时的桥壳强度计算 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12七、参考书目⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14八、课程设计感想⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 15一、课程设计任务书1、题目《BJ130驱动桥部分设计验算与校核》2、设计内容及要求1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。4)驱动桥强度计算:①桥壳的静弯曲应力②不平路载下的桥壳强度③最大牵引力时的桥壳强度④紧急制动时的桥壳强度⑤最大侧向力时的桥壳强度3、主要技术参数轴距L=2800mm轴荷分配:满载时前后轴载 1340/2735(kg)发动机最大功率: 80ps n :3800-4000n/min﹒m n :2200-2500n/min传动比:i10轮毂总成和制动器总成的总重: gk=274kg设计内容二、总体结构设计采用非断开式驱动桥,单级螺旋圆锥齿轮减速器。桥壳形式:整体式半轴形式:全浮式差速器形式:直齿圆锥齿轮式三、主减速器部分设计由于所设计车型为轻型货车,主减速比不是很大,故采用单级单速主减速器。考虑到离地间隙问题,选用双曲面齿轮副传动,减小从动齿轮尺寸,增大最小离地间隙。又由于安装空间的限制,采用悬臂式支承。

结果Tce=6450N﹒mTcs=8899NmTcf=375N﹒m计算锥齿轮最大应力时,Tz=1164Nm;计算锥齿轮疲劳寿命时,Tz=68N m。z1=7z2=411、主减速器齿轮计算载荷的确定(1)按发动机最大转矩和最低档传动比确定从动锥齿轮的计算转矩 Tce式中:Tem——发动机最大转矩 , Tem=175N﹒mKd——动载系数,由性能系数 fi确定当mag×Tem<16时,fi×mag/Tem);当mag×Tem≥16时,fi=0。式中,ma为汽车满载质量,ma=1340+2735=4075kg,mag/Tem=45.4>16,fi<0,所以选 Kd=1。K——液力变矩系数,该减速器无液力变矩器, K=1i1——变速器一档传动比, i1if——分动箱传动比,该减速器无分动箱, if=1i0——主减速器传动比, i0η——发动机到从动锥齿轮之间的传动效率,取η= 90%n——计算驱动桥数,n=1由上面数据计算得:Tce=6450N﹒m(2)按驱动轮打滑扭矩确定从动锥齿轮的计算转矩Tcs式中:G2——满载状态下一个驱动桥上的静载荷,G2=27350Nm2’——汽车最大加速度时的候车轴负载转移系数,取m’=2φ——轮胎与路面间的附着系数,取φ=r r——车轮滚动半径, rr,查BJ130使用手册得知,轮胎规格为,取 a=2,所以rr==i m——主减速器从动齿轮到车轮间传动比, im=1ηm——主减速器从动齿轮到车轮间传动效率,η m=1由上面数据计算得: Tcs=8899Nm(3)按日常平均行驶转矩确定从动齿轮计算转矩式中:F——汽车日常行驶平均牵引力,Ft=F+F+F+F。日常行驶忽略坡度阻力和加速阻力,tfiwjFi=Fj=0,滚动阻力Ff=W﹒16,W=40750N,因此Ff=652N;空气阻力Fw=CD﹒A﹒u22,日常平均行驶车速u=50km/h,因此F=426N。计算得到:F=1078N。aDDawtrr——车轮滚动半径,rri——主减速器从动齿轮到车轮间传动比,i=1mmηm——主减速器从动齿轮到车轮间传动效率,η m=1n——计算驱动桥数, n=1由上面数据计算得: Tcf=375N﹒m(4)从动锥齿轮计算转矩

i0Tc=6457NmD1=49mmD2=280mmms=7mmb2=43mmb1=47mmm1=36°,m2=34°主动齿轮左旋,从动齿轮右旋。α=22°30′单位齿长圆周力p=1163N/mm<[p],满足设计要求。从动齿轮:按最大弯曲应力计算w2=396MPa<[σw];按疲劳弯曲应力计算w2=23MPa<[σw]满足设计要求。主动齿轮:按最大弯曲应力计算w1=309MPa<[σw];按疲劳弯曲应力计算w1=18MPa<[σw]满足设计要求。最大接触应力J=2459MPa<[σJ],满足设计要求;疲劳接触应力J=594MPa当计算锥齿轮最大应力时, Tc=min[Tce,Tcs],Tce=6450N﹒m,Tcs=8899Nm,所以Tc=Tce=6450Nm。当计算锥齿轮疲劳寿命时, Tc=Tcf,Tcf=375N﹒m,所以Tc=Tcf=375N﹒m。(5)主动锥齿轮的计算转矩式中:ηG——主从动锥齿轮间传动效率,对于弧齿锥齿轮副ηG=95%。当计算锥齿轮最大应力时,T=6450Nm,计算得T=1164Nm;cz当计算锥齿轮疲劳寿命时,Tc=375N﹒m,计算得Tz=68Nm。2、锥齿轮主要参数选择(1)主从动齿轮齿数Z1,Z2i01=7,则从动锥齿轮z=7×02重新计算 Tce=6457N﹒m,Tcs=8899Nm,Tcf=375N﹒m。当计算锥齿轮最大应力时,T=min[Tce,T]=6457Nm;ccs当计算锥齿轮疲劳寿命时,T=T=375N﹒m。ccf为保证可靠性,计算时取Tc=6457Nm。(2)从动锥齿轮分度圆直径 D2和端面模数 ms根据经验公式,D2KD23Tc式中:K——直径系数,K=13~16,取15D2D2计算得 D2=280mm则ms=D2/Z2mKm3T同时,ms满足sc式中: Km为模数系数, Kmm计算得 ms取两个计算结果的较小值并取整为 ms=7mm,重新计算 D2=287mm。主动锥齿轮大端分度圆直径 D1=D2/i0=49mm。3)齿面宽b10ms。43mm=47mm。(4)双曲面小齿轮偏移距 E22=42mm5)中点螺旋角β

<[σJ],满足设计要求。n=4行星齿轮球面半径Rb=47mm节锥距A0=45mm行星齿轮齿数z1=10,半轴齿轮齿数z2=161=32°2=58°m=5d1=50mmd2=80mmA0=47mm=22°30′行星齿轮轴直径d=22mmb2=25mmT0=min[Tce,Tcs]时,w=850MPa<[σw],符合设计要求;T0=Tcf时,w=49MPa<[σw],符合设计要求;半轴计算转矩:Tφ=3874Nmd=33mm=549MPa满足设计要求。制动时,=487MPa<[τ],满足设计要求。β=30°m=2mmz=19D=40mm双曲面锥齿轮由于存在E,所以βm1与βm2不相等取β=35°,ε=2°则β=36°,βm2=34°m16)螺旋方向发动机旋转方向为逆时针,为避免轮齿卡死而损坏,应使轴向力离开锥顶方向,符合左手定则,所以主动齿轮左旋,从动齿轮右旋。7)法向压力角α货车法向平均压力角取 22°30′。3、主减速器强度计算(1)单位齿长圆周力 p主减速器锥齿轮的表面耐磨性常用轮齿上的单位齿长圆周力 p来估算,式中:Temax——发动机最大输出转矩, Temax=175Nmi1——变速器传动比, i1=7D1——主动锥齿轮中心分度圆直径, D1=49mmb2——从动齿面宽, b2=43mm将数值代入,计算得: p=1163N/mm查表得单位齿长圆周力许用值 [p]=1429N/mm,P<[p],满足设计要求。(2)齿轮弯曲强度锥齿轮轮齿的齿根弯曲应力为:式中:Tc——齿轮的计算转矩。从动齿轮:按最大弯曲应力算时 Tc=6457NmNm,按疲劳弯曲应力算时 Tc=375N m;主动齿轮:按最大弯曲应力算时 Tz=1164N m,按疲劳弯曲应力算时 Tz=68N m。K0——过载系数,取K=10Ks——尺寸系数,mss=(msKm——齿面载荷分配系数。跨置式支撑结构 Kmm=1Kv——质量系数 ,Kv=1ms——从动锥齿轮断面模数, ms=7mmb——齿面宽,主动齿轮 b1=47mm,从动齿轮 b2=43mm——分度圆直径,主动齿轮D1=49mm,从动齿轮D2=280mmJ w——综合系数,通过查图得,主动齿轮 Jww对于从动齿轮:

d=35mmB=4mms=72MPa,s<[τs],故满足设计要求。σc=116MPa,σc<[σc],故满足设计要求。M=2421Nmwj=wj<[σwj],满足设计要求。wj=MPa,σwj<[σwj],满足设计要求。Mv=3623NmMh=2459NmT=551NmM∑=4413Nmσ∑=144MPa,z<[σz],满足设计要求。Mv=1791NmMh=2319NmT=807Nmσ∑=99MPa,σ∑<[σ∑],所以满足设计要求。WA-A=276MPa,WA-A<[σWA-A],满足设计要求。A-A断面A-A=36MPa,A-A<[τA-A],满足设计要求。σ∑A-A=283MPa,按最大弯曲应力计算σ w2=396MPa,[σw]=700MPa,σw2≤[σw],满足设计要求;按疲劳弯曲应力计算σ w2=23MPa,[σw]=210MPa,σw2≤[σw] ,满足设计要求。对于主动齿轮:按最大弯曲应力计算σ w1=309MPa,[σw]=700MPa,σw2≤[σw],满足设计要求;按疲劳弯曲应力计算σ w1=18MPa,[σw]=210MPa,σw2≤[σw],满足设计要求。(3)齿轮接触强度式中:Cp——综合弹性系数,钢的齿轮 CpD 1——主动锥齿轮大端分度圆直径, D1=49mmTz——主动齿轮计算转矩。按最大弯曲应力算时 Tz=1164N m,按疲劳弯曲应力算时Tz=68N mK0——过载系数,取 K0=1Ks——尺寸系数, Ks=1Km——齿面载荷分配系数。跨置式支撑结构 Kmm=1Kf——表面品质系数, Kf=1Kv——质量系数 ,Kv=1b——b1和b2中较小的齿面宽, b=b2=43mmJJ——齿面接触强度的综合系数,通过查接触强度计算用综合系数图得 JJ按min[Tce,T]计算的最大接触应力σJ=2459MPa,[σ]=2800MPa,σcsJJ<[σJ],满足设计要求;按Tcf计算的疲劳接触应力σJ=594MPa,[σJ]=1750MPa,σJ<[σJ],满足设计要求。四、差速器部分设计1、差速器主参数选择(1)BJ130为货车,取差速器行星齿轮数 n=4(2)行星齿轮球面半径 RbKb——行星齿轮球面半径系数, KbbTd——差速器计算转矩, Td=min[Tce,Tcs]=6457Nm计算得:Rb=47mm节锥距A0b0=45mm(3)确定行星齿轮和半轴齿轮齿数取行星齿轮齿数 z1=10,半轴齿轮齿数 z2取为16。

σ∑A-A<[σ∑A-A],满足设计要求。B-B断面B-B=36MPa,B-B<[τB-B],满足设计要求。σ∑B-B=283MPa,σ∑B-B<[σ∑B-B],满足设计要求。z2/z14)行星齿轮和半轴齿轮节锥角γ1,γ2及其模数m锥齿轮大端的端面模数m=2A0sinγ1/z1=2A0sinγ2/z2则:d1=z1m=50mm,d2=z2m=80mm重新验算节锥距A0=d1/(2sinγ1)=d2/(2sinγ2)=47mm5)压力角α采用α=22°30′行星齿轮轴直径d及支承长度L式中:T——差速器壳传递的转矩,T=T=min[Tce,T]=6457Nm00dcs[σc]——支承面许用挤压应力,取98MPa——行星齿轮数,n=4rd——行星齿轮支承面中心到锥顶的距离, rd2=32mm2、差速器齿轮强度计算差速器齿轮只有当汽车转弯或左右轮行驶不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。因此,对于差速器齿轮主要应进行弯曲强度计算。齿轮弯曲应力σ w为:Tc——半轴齿轮计算转矩。当 T0=min[Tce,Tcs]时,Tc×T0=3874Nm;当T0=Tcf时,Tc×T0=225NmKs——尺寸系数, Ks=1Km——齿面载荷分配系数。跨置式支撑结构 Kmm=1Kv——质量系数 ,Kv=1m——端面模数, m=5b2——半轴齿轮齿宽, b20=14mmd2——半轴齿轮大端分度圆直径, d2=80mm——n——行星齿轮数, n=4计算得:当T0=min[Tce,Tcs]时,[σw]=980MPa,σw=1517MPa>[σw]。超出许用值较多,增大齿面齿宽,齿宽的极限尺寸为10×m=50mm,取b2=25mm,σw=850MPa<[σw],符合设计要求。当T0=Tcf时,[σw]=210MPa,σw=49MPa<[σw]五、半轴部分设计本驱动桥采用全浮式半轴,因为全轴式半轴只承受传动系的转矩而不承受弯矩,可以承载较大载荷,适应于货车。1、半轴计算转矩 Tφ及杆部直径全浮式半轴只承受转矩,全浮式半轴的计算载荷可按主减速器从动锥齿轮计算转矩进一步计算得到,即式中:ξ——计算得到: Tφ=3874Nm杆部直径可按照下式进行初选:2、受最大牵引力时强度计算半轴的切应力为:半轴选用 40Cr,进行调制处理,扭转切应力宜为 490~588Mpa,所以设计满足要求。3、制动时强度计算纵向力应按最大附着力计算:式中:m2——φ——则X2=9880N,M扭=X2rr=3438Nm[ τ]=700MPa,τ<[τ],满足设计要求。4、半轴花键计算半轴和半轴齿轮一般采用渐开线花键连接,对花键进行挤压应力和键齿切应力验算。选用压力角为 30°π(1)半轴花键的剪切应力校核式中:Tφ——半轴计算转矩 ,Tφ=3874NmD——半轴花键外径,取 D=40mmd——相配的花键孔内径,取 d=35mmz——花键齿数,取 z=19Lp——有效工作长度,取 Lp=50mmb——花键宽, b=4mmφ——载荷分布的不均匀系数 , 取φ代入数据计算得:s=72MPa,[τs]=73MPa,τs<[τs],故满足设计要求。2)半轴花键的挤压应力校核代入数据计算得:c=116MPa,[σc]=200MPa,σc<[σc],故满足设计要求。六、驱动桥壳设计1、桥壳的静弯曲应力计算桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎的中心线,地面给轮胎以反力 G2/2(双胎时则沿双胎之中心) ,桥壳则承受此力与车轮重力 gw之差值,即(G2/2-gw),计算简图如右图所示。桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩 M为式中:G——汽车满载静止于水平路面时驱动桥给地面的载荷,G=27350N22gw——车轮(包括轮毂、制动器等)的重力, gw=2740NB——s——计算得:M=2421Nm由弯矩图得危险截面在钢板弹簧座附近。静弯曲应力σ wj为式中:M——两钢板弹簧座之间的弯矩, M=2421NmWv——危险断面处(钢板弹簧座附近)桥壳的垂向弯曲截面系数。采用圆管断面,则3Wv=1/32πD3(1-d4/D4),d取38mm,D取70mm,则Wv=30734mm计算得:σ wjσwj]=500MPa,σwj<[σwj],满足设计要求。2、在不平路面冲击载荷作用下的桥壳强度计算当汽车在不平路面上高速行驶时,桥壳除承受静载荷外,还承受附加的冲击载荷。在这两种载荷总的作用下,桥壳所产生的弯曲应力为式中:kd——计算得:σ wj=197MPa,[σwj]=500MPa,σwj<[σwj],满足设计要求。3、汽车以最大牵引力行驶时的桥壳强度计算(1)驱动桥壳在左右钢板弹簧座之间的垂向弯矩 Mv地面对后驱动桥左右车轮的垂向反作用力 Z2L、Z2R相等,则G2——汽车满载静止于水平地面时驱动桥给地面的载荷, G2=27350N。m2——汽车加速行驶时的质量转移系数。 m22计算得 Z2L=Z2R=16410N驱动桥壳在左右钢板弹簧座之间的垂向弯矩 Mv为代入数据得: Mv=3623Nm(2)驱动桥壳承受的水平方向的弯矩 MhPmax——地面对驱动车轮的最大切向反作用力, Pmax=Temaxi1i0ηT/rr=18556N代入数据得: Mh=2459Nm(3)驱动桥壳承受的因驱动桥传递驱动转矩而引起的反作用力矩 T代入数据得 T=551Nm(4)合成弯矩 M∑及合成应力σ ∑采用断面为圆管的桥壳,在钢板弹簧座附近的危险断面处的合成弯矩为计算得 M∑=4413Nm该危险断面处的合成应力σ ∑为W——危险断面处的弯曲截面系数, W=30734计算得σ∑=144MPa,[σ∑]=300MPa,σz<[σz],满足设计要求。、汽车紧急制动时的桥壳强度计算紧急制动时桥壳在两钢板弹簧座之间的垂向弯矩 Mv及水平方向的弯矩 Mh分别为m′——汽车制动时的质量转移系数。后驱动桥壳时取 m′=m2′,对载货汽车后驱动桥取 m′计算得 Mv=2173Nm Mh=2319Nm桥壳在两钢板弹簧座的外侧部分处同时承受制动力所引起的转矩 T,计算得:T=807Nm代入数据得到:σ ∑=99MPa,[σ∑]=100MPa,σ∑<[σ∑],所以满足设计要求。5、 汽车受最大侧向力时的桥壳强度计算如上图所示, A-A、B-B处为危险断面。半轴套管的在危险断面A-A处的垂向弯矩MA-Aφ1——轮胎与地面间的侧向附着系数,计算时取φ1=11hg/B——φ1hg2L=0,Z2R=G2,此时驱动桥的全部载荷由侧滑方向一侧的驱动车轮承担,这种极端情况对驱动桥的强度极为不利,应避免这种情况产生。a——BJ130a=38mm计算得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论