辽宁省葫芦岛第六高级中学2023届数学高一上期末监测模拟试题含解析_第1页
辽宁省葫芦岛第六高级中学2023届数学高一上期末监测模拟试题含解析_第2页
辽宁省葫芦岛第六高级中学2023届数学高一上期末监测模拟试题含解析_第3页
辽宁省葫芦岛第六高级中学2023届数学高一上期末监测模拟试题含解析_第4页
辽宁省葫芦岛第六高级中学2023届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列函数中,是奇函数且在区间上单调递减的是()A. B.C. D.2.关于x的方程恰有一根在区间内,则实数m的取值范围是()A. B.C. D.3.下列各式中,正确是()A. B.C. D.4.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.5.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.6.下列结论正确的是()A.不相等的角终边一定不相同B.,,则C.函数的定义域是D.对任意的,,都有7.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为A.π B.πC.4π D.π8.已知正实数满足,则的最小值是()A B.C. D.9.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,10.下列命题中,错误的是()A.平行于同一条直线的两条直线平行B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面C.已知直线平面,直线,则直线D.已知为直线,、为平面,若且,则11.函数的图像大致为()A. B.C. D.12.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且二、填空题(本大题共4小题,共20分)13.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________14.若函数(,且)的图象经过点,则___________.15.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.16.设且,函数,若,则的值为________三、解答题(本大题共6小题,共70分)17.已知函数,且.(1)求函数的定义域,并判断函数的奇偶性.(2)求满足的实数x的取值范围.18.在平面直角坐标系xOy中,角的顶点与原点O重合,始边与x轴的正半轴重合,它的终边过点,以角的终边为始边,逆时针旋转得到角Ⅰ求值;Ⅱ求的值19.已知函数(且)的图像过点.(1)求a的值;(2)求不等式的解集.20.设函数是定义在上的奇函数,当时,(1)确定实数的值并求函数在上的解析式;(2)求满足方程的的值.21.已知.(1)若是奇函数,求的值,并判断的单调性(不用证明);(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.22.如图,ABCD是一块边长为100米的正方形地皮,其中ATS是一座半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现有一开发商想在平地上建造一个两边分别落在BC与CD上的长方形停车场PQCR,求长方形停车场PQCR面积的最大值.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据函数的单调性和奇偶性对各个选项逐一分析即可.【详解】对A,函数的图象关于轴对称,故是偶函数,故A错误;对B,函数的定义域为不关于原点对称,故是非奇非偶函数,故B错误;对C,函数的图象关于原点对称,故是奇函数,且在上单调递减,故C正确;对D,函数的图象关于原点对称,故是奇函数,但在上单调递增,故D错误.故选:C.2、D【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解.【详解】方程对应的二次函数设为:因为方程恰有一根属于,则需要满足:①,,解得:;②函数刚好经过点或者,另一个零点属于,把点代入,解得:,此时方程为,两根为,,而,不合题意,舍去把点代入,解得:,此时方程为,两根为,,而,故符合题意;③函数与x轴只有一个交点,横坐标属于,,解得,当时,方程的根为,不合题意;若,方程的根为,符合题意综上:实数m的取值范围为故选:D3、C【解析】利用指数函数的单调性可判断AB选项的正误,利用对数函数的单调性可判断CD选项的正误.【详解】对于A选项,因为函数在上为增函数,则,A错;对于B选项,因为函数在上为减函数,则,B错;对于C选项,因为函数为上的增函数,则,C对;对于D选项,因为函数为上的减函数,则,D错.故选:C.4、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.5、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.6、B【解析】根据对数函数与三角函数的性质依次讨论各选项即可得答案.【详解】解:对于A选项,例如角的终边相同,但不相等,故错误;对于B选项,,,则,故正确;对于C选项,由题,解得,即定义域是,故错误;对于D选项,对数不存在该运算法则,故错误;故选:B7、B【解析】球半径,所以球的体积为,选B.8、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.9、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.10、C【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D.【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确;由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确;由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误;若,由线面平行的性质,可得过的平面与的交线与平行,又,可得,结合,可得,故D正确.故选:C.11、A【解析】先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.12、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..二、填空题(本大题共4小题,共20分)13、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、14、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.15、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.16、【解析】根据函数的解析式以及已知条件可得出关于实数的等式,由此可解得实数的值.【详解】因为,且,则.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)定义域为,奇函数;(2)当时的取值范围是;当时的取值范围是【解析】(1)根据题意,先求出函数的定义域,进而结合函数的解析式可得,即可得结论;(2)根据题意,即,分与两种情况讨论可得的取值范围,综合即可得答案详解】解:(1)根据题意,,则有,解可得,则函数的定义域为,又由,则是奇函数;(2)由得①当时,,解得;②当时,,解得;当时的取值范围是;当时的取值范围是【点睛】本题考查函数的单调性与奇偶性的应用,注意判断奇偶性要先求出函数的定义域,属于中档题18、(Ⅰ)(Ⅱ)【解析】Ⅰ由题意利用任意角的三角函数的定义,求得的值Ⅱ先根据题意利用任意角的三角函数的定义求得、的值,再利用二倍角公式求得、的值,再利用两角和的余弦公式求得的值【详解】解:Ⅰ角的顶点与原点O重合,始边与x轴的正半轴重合,它的终边过点,Ⅱ以角的终边为始边,逆时针旋转得到角,由Ⅰ利用任意角的三角函数的定义可得,,,【点睛】本题主要考查任意角的三角函数的定义,二倍角公式,两角和的余弦公式的应用,属于中档题19、(1)(2)【解析】(1)代入点坐标计算即可;(2)根据定义域和单调性即可获解【小问1详解】依题意有∴.【小问2详解】易知函数在上单调递增,又,∴解得.∴不等式的解集为.20、(1),(2)或或【解析】(1)利用奇函数定义即可得到的值及函数在上的解析式;(2)分成两类,解指数型方程即可得到结果.【详解】(1)是定义在上的奇函数当时,,当时,设,则(2)当时,,令,得得解得是定义在上的奇函数所以当x<0时的根为:所以方程的根为:【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围21、(1)答案见解析;(2)【解析】(1)函数为奇函数,则,据此可得,且函数在上单调递增;(2)原问题等价于在区间(0,1)上有两个不同的根,换元令,结合二次函数的性质可得的取值范围是.试题解析:(1)因为是奇函数,所以,所以;在上是单调递增函数;(2)

在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根,所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y=a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论