辽宁省大连市2023届高一数学第一学期期末复习检测试题含解析_第1页
辽宁省大连市2023届高一数学第一学期期末复习检测试题含解析_第2页
辽宁省大连市2023届高一数学第一学期期末复习检测试题含解析_第3页
辽宁省大连市2023届高一数学第一学期期末复习检测试题含解析_第4页
辽宁省大连市2023届高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的最小正周期是()A.π B.2πC.3π D.4π2.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角3.对于函数定义域中任意的,,当时,总有①;②都成立,则满足条件的函数可以是()A. B.C. D.4.角终边经过点,那么()A. B.C. D.5.已知角满足,则A B.C. D.6.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和7.设非零向量、、满足,,则向量、的夹角()A. B.C. D.8.在平面直角坐标系中,动点在单位圆上按逆时针方向作匀速圆周运动,每分钟转动一周.若的初始位置坐标为,则运动到分钟时,的位置坐标是()A B.C. D.9.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}10.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.不等式的解集是__________12.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③13.计算_____________.14.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.15.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-1三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设全集,集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,求实数的取值范围.17.已知函数(,且).(1)求的值,并证明不是奇函数;(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.注:设x为实数,表示不超过x的最大整数.参考数据:,,,.18.设函数的定义域为,函数的定义域为.(1)求;(2)若,且函数在上递减,求的取值范围.19.已知二次函数满足.(1)求b,c的值;(2)若函数是奇函数,当时,,(ⅰ)直接写出的单调递减区间为;(ⅱ)若,求a的取值范围.20.某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,第次改良工艺后所排放的废气中含有的污染物数量为,则可建立函数模型,其中是指改良工艺的次数.已知,(参考数据:).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?21.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】化简得出,即可求出最小正周期.【详解】,最小正周期.故选:A.2、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等3、B【解析】根据函数在上是增函数,且是上凸函数判断.【详解】由当时,总有,得函数在上是增函数,由,得函数是上凸函数,在上是增函数是增函数,是下凸函数,故A错误;在上是增函数是增函数,是上凸函数,故B正确;在上是增函数,是下凸函数;故C错误;在上是减函数,故D错误.故选:B4、C【解析】利用任意角的三角函数的定义,求得和的值,可得的值【详解】解:角终边上一点,,,则,故选:5、B【解析】∵∴,∴,两边平方整理得,∴.选B6、D【解析】分别代入的值,由幂函数性质判断函数增减性即可.【详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D7、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B8、A【解析】根据题意作出图形,结合图形求出3分钟转过角度,由此计算点的坐标.【详解】每分钟转动一周,则运动到分钟时,其转过的角为,如图,设与x轴正方向所成的角为,则与x轴正方向所成的角为,的初始位置坐标为,即,所以,即.故选:A9、D【解析】由x2≥2x解得:x(x-2)≥0,所以x≤0或x≥2.选D.10、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【点睛】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题12、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.13、【解析】将所给式子通分后进行三角变换可得结果【详解】由题意得故答案为:【点睛】易错点睛:本题考查三角恒等化简,本题的关键是通分后用正弦的差角公式,在由化成时注意角的顺序,这是容易出错的地方,考查运算能力,属于中档题.14、①②③【解析】由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案【详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误综上正确结论的序号是①②③【点睛】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题15、D【解析】设平均增长率为x,由题得故填.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)①;②;③.【解析】(1)将代入集合,求出集合和,然后利用交集的定义可求出集合;(2)选择①,根据得出关于实数的不等式组,解出即可;选择②,由,可得出,可得出关于实数的不等式组,解出即可;选择③,求出集合,根据可得出关于实数的不等式,解出即可.【详解】(1)当时,,,,因此,;(2),.选择①,,则或,解得或,此时,实数的取值范围是;选择②,,,则,解得,此时,实数的取值范围是;选择③,,或,解得或,此时,实数的取值范围是.综上所述,选择①,实数的取值范围是;选择②,实数的取值范围是;选择③,实数的取值范围是.【点睛】本题考查交集与补集的混合运算,同时也考查了利用集合的包含关系求参数的取值范围,考查运算求解能力,属于中等题.17、(1),证明见解析(2)证明见解析,【解析】(1)利用,可证明;(2)利用零点的判定方法证明(5),可求得【小问1详解】证明:,,,,不是奇函数;【小问2详解】,,(5),(5),存在不为0的零点18、(1);(2).【解析】(1)先求出集合,,然后由补集和并集的定义求解即可;(2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可【详解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在上递减,得,即,∴.19、(1);;(2)或【解析】(1)代值计算即可,(2)先根据函数的奇偶性求出的解析式,(i)根据函数的解析式和二次函数的性质即可求出函数的单调减区间,(ii)根据函数单调性性质可得或解得即可.试题解析:二次函数满足,解得:;.(2)(ⅰ)(ⅱ)由(1)知,则当时,;当时,,则因为是奇函数,所以.若,则或解得或.综上,a的取值范围为或.20、(1);(2)6.【解析】(1)将,代入函数模型解解得答案;(2)结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论