版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.设全集,集合,则等于A. B.C. D.2.函数的单调递减区间是A. B.C. D.3.若则A. B.C. D.4.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.5.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.6.如果,那么A. B.C. D.7.已知函数,则A.1 B.C.2 D.08.若,,,则A B.C. D.9.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.10.若和都是定义在上的奇函数,则()A.0 B.1C.2 D.311.已知函数,则的()A.最小正周期,最大值为 B.最小正周期为,最大值为C.最小正周期为,最大值为 D.最小正周期为,最大值为12.直线截圆所得的线段长为()A.2 B.C.1 D.二、填空题(本大题共4小题,共20分)13.计算______14.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的15.已知,则__________.16.已知点,直线与线段相交,则实数的取值范围是____;三、解答题(本大题共6小题,共70分)17.已知角的顶点在坐标原点,始边与x轴正半轴重合,终边经过点.(1)求,;(2)求的值.18.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点.(1)求阴影部分的面积;(2)当时,求的值.19.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)求使x的取值范围20.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.21.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.22.已知函数.(1)若,求的最大值;(2)若,求关于不等式的解集.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】,=2、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质3、A【解析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.4、A【解析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.5、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D6、D【解析】:,,即故选D7、C【解析】根据题意可得,由对数的运算,即可求解,得到答案【详解】由题意,函数,故选C【点睛】本题主要考查了函数值的求法,函数性质等基础知识的应用,其中熟记对数的运算性质是解答的关键,着重考查了考查化归与转化思想、函数与方程思想,属于基础题,8、B【解析】利用指数函数与对数函数的单调性分别求出的范围,即可得结果.【详解】根据指数函数的单调性可得,根据对数函数的单调性可得,则,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.9、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)10、A【解析】根据题意可知是周期为的周期函数,以及,,由此即可求出结果.【详解】因为和都是定义在上的奇函数,所以,,所以,所以,所以是周期为周期函数,所以因为是定义在上的奇函数,所以,又是定义在上的奇函数,所以,所以,即,所以.故选:A.11、B【解析】利用辅助角公式化简得到,求出最小正周期和最大值.【详解】所以最小正周期为,最大值为2.故选:B12、C【解析】先算出圆心到直线的距离,进而根据勾股定理求得答案.【详解】圆,即圆心.圆心C到直线的距离,则直线截圆所得线段长为:.故选:C.二、填空题(本大题共4小题,共20分)13、11【解析】进行分数指数幂和对数式的运算即可【详解】原式故答案为11【点睛】本题考查对数式和分数指数幂的运算,熟记运算性质,准确计算是关键,是基础题.14、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx15、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:316、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力三、解答题(本大题共6小题,共70分)17、(1),;(2).【解析】(1)根据三角函数的定义,即可求出结果;(2)利用诱导公式对原式进行化简,代入,的值,即可求出结果.【详解】解:(1)因为角的终边经过点,由三角函数的定义知,(2)诱导公式,得.18、(1)(2)【解析】(1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积;(2)由三角函数定义写出点坐标,计算后用二倍角公式和诱导公式计算【详解】(1)由三角函数定义可知,点P的坐标为.所以面积为,扇形OPA的面积为.所以阴影部分的面积为.(2)由三角函数的定义,可得.当时,,即,所以.【点睛】本题考查三角函数的定义,正弦的二倍角公式和诱导公式,属于基础题.19、(1)定义域为,奇函数;(2)【解析】(1)只需解不等式组即可得出f(x)的定义域;求f(﹣x)即可得到f(﹣x)=﹣f(x),从而得出f(x)为奇函数;(2)讨论a:a>1,和0<a<1,根据f(x)的定义域及对数函数的单调性即可求得每种情况下原不等式的解详解】解:(1)要使函数(且)有意义,则,解得故函数的定义域为,关于原点对称,又,所以,为奇函数(2)由,即,当时,原不等式等价为,解得当,原不等式等价为,解得又因为的定义域为,所以,当时,使的x的取值范围是.当时,使的x的取值范围是20、(1)证明见解析;(2)30°;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解.【详解】(1)因为,是的中点,所以,故四边形是菱形,从而,所以沿着翻折成后,,又因为,所以平面,由题意,易知,,所以四边形是平行四边形,故,所以平面;(2)因为平面,所以与平面所成的角为,由已知条件,可知,,所以是正三角形,所以,所以与平面所成的角为30°;(3)假设线段上是存在点,使得平面,过点作交于,连结,,如下图:所以,所以,,,四点共面,又因平面,所以,所以四边形为平行四边形,故,所以为中点,故在线段上存在点,使得平面,且.21、(Ⅰ);(Ⅱ)9.【解析】(Ⅰ)首先求得直线方程与坐标轴的交点,然后求解的值即可;(Ⅱ)由题意结合截距式方程和均值不等式的结论求解的最小值即可.【详解】(Ⅰ),令令,.(Ⅱ)设,则,,当时,的最小值.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年道路运输服务项目资金筹措计划书代可行性研究报告
- 2023年汽、柴油深度加氢催化剂投资申请报告
- 2024年烟度计项目投资申请报告代可行性研究报告
- 十字相乘法课件
- 《故事口才故事会》课件
- 消防知识国旗下讲话稿(33篇)
- 门面房租赁合约合同(31篇)
- 社区环境调查报告
- 四川省遂宁市蓬溪县2024届九年级上学期期末考试数学试卷(含答案)
- 贵州省六盘水市2023-2024学年高二上学期1月期末质量监测试题 数学 含答案
- 精神科护士年终总结个人2024
- 北京2024年北京市疾病预防控制中心面向应届生招聘38人笔试历年典型考题及考点附答案解析
- 八年级英语下教研工作计划5篇
- 超市供货服务方案(2篇)
- 健康管理实务考试题及答案
- JT-T-1198-2018公路交通噪声防护措施分类及技术要求
- 马克思主义发展史智慧树知到期末考试答案章节答案2024年广西师范大学
- 中国特色社会主义事业的总体布局与五位一体发展战略
- 教科版小学二年级上册科学期末测试卷附参考答案(满分必刷)
- 2024-2030年中国厨余垃圾处理机行业市场全景调研及前景战略研判报告
- 运动生物力学智慧树知到期末考试答案章节答案2024年山东体育学院
评论
0/150
提交评论