江西省赣州市会昌中学宁师中学2023届高一上数学期末学业水平测试试题含解析_第1页
江西省赣州市会昌中学宁师中学2023届高一上数学期末学业水平测试试题含解析_第2页
江西省赣州市会昌中学宁师中学2023届高一上数学期末学业水平测试试题含解析_第3页
江西省赣州市会昌中学宁师中学2023届高一上数学期末学业水平测试试题含解析_第4页
江西省赣州市会昌中学宁师中学2023届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若定义运算,则函数的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]2.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)3.已知函数,则()A.5 B.C. D.4.若,则a,b,c的大小关系是()A. B.C. D.5.命题“对,都有”的否定为()A.对,都有 B.对,都有C.,使得 D.,使得6.已知全集,集合,集合,则集合为A. B.C. D.7.已知全集,,则()A. B.C. D.8.与圆关于直线对称的圆的方程为()A. B.C. D.9.已知函数的图像如图所示,则A. B.C. D.10.点到直线的距离等于()A. B.C.2 D.11.若,则有()A.最小值为3 B.最大值为3C.最小值为 D.最大值为12.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______14.已知函数,,则它的单调递增区间为______15.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.16.已知扇形的半径为4,圆心角为,则扇形的面积为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.(1)计算:,(为自然对数的底数);(2)已知,求的值.18.函数的部分图象如图所示.(1)求A,,的值;(2)将函数的图象向右平移个单位长度,得到函数的图象,若,且,求的值.19.计算下列各式的值:(1)lg2(2)sin20.为推动治理交通拥堵、停车难等城市病,不断提升城市道路交通治理能力现代化水平,乐山市政府决定从2021年6月1日起实施“差别化停车收费”,收费标准讨论稿如下:A方案:首小时内3元,2-4小时为每小时1元(不足1小时按1小时计),以后每半小时1元(不足半小时按半小时计);单日最高收费不超过18元.B方案:每小时1.6元(1)分别求两个方案中,停车费y(元)与停车时间(小时)之间的函数关系式;(2)假如你的停车时间不超过4小时,方案A与方案B如何选择?并说明理由(定义:大于或等于实数x的最小整数称为x的向上取整部分,记作,比如:,)21.已知是方程的两根,且,求的值22.计算(1);(2)计算:;(3)已知,求.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】作出函数的图像,结合图像即可得出结论.【详解】由题意分析得:取函数与中的较小的值,则,如图所示(实线部分):由图可知:函数的值域为:.故选:D.【点睛】本题主要考查了指数函数的性质和应用.考查了数形结合思想.属于较易题.2、B【解析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件3、A【解析】分段函数求值,根据自变量的取值范围代相应的对应关系【详解】因为所以故选:A4、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.5、D【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】,都有的否定是,使得.故选:D6、C【解析】,选C7、C【解析】根据补集的定义可得结果.【详解】因为全集,,所以根据补集的定义得,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解8、A【解析】设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题10、C【解析】由点到直线的距离公式求解即可.【详解】解:由点到直线的距离公式得,点到直线的距离等于.故选:C【点睛】本题考查了点到直线的距离公式,属基础题.11、A【解析】利用基本不等式即得,【详解】∵,∴,∴,当且仅当即时取等号,∴有最小值为3.故选:A.12、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值.【详解】,所以,.当且仅当时,等号成立,且此时三边可以构成三角形.因此,该三角形面积的最大值为.故答案为:.14、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为15、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为16、【解析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)2;(2).【解析】(1)由条件利用对数的运算性质求得要求式子的值.(2)由条件利用同角三角函数的基本关系平方即可求解【详解】(1)原式.(2)因为,两边同时平方,得.【点睛】本题主要考查对数的运算性质,同角三角函数的基本关系,熟记公式是关键,属于基础题18、(1),,(2)或【解析】(1)根据函数的部分图象即可求出A,,然后代入点,由即可求出的值;(2)根据三角函数的图象变换先求出函数的解析式,然后利用,结合即可确定的值.小问1详解】解:由图可知,,,所以,即,所以.将点代入得,,又,所以;【小问2详解】解:由(1)知,由题意有,所以,即,因为,所以,所以或,即或,所以的值为或.19、(1)1(2)-1【解析】(1)利用对数的运算性质直接计算可得;(2)先进行切化弦,再通分后利用和差角公式和诱导公式即可求得.【小问1详解】原式=lg2(lg2+lg5)+lg5=lg2+lg5=1【小问2详解】原式=sin40°(sin10°cos=sin40°(sin10=2=-2=-=-=-120、(1),(2)当停车时间不超过3.75小时,选B方案;当停车时间大于3.75小时不超过4小时,选A方案,理由见解析.【解析】(1)根据题意可得答案;(2)根据(1)的答案分析即可.【小问1详解】根据题意可得:A方案:当,;当时,当时,;当,所以B方案:【小问2详解】显然当时,;又因为,,所以存在,使得,即,解得故当停车时间不超过3.75小时,选B方案;当停车时间大于3.75小时不超过4小时,选A方案21、【解析】先计算出的值并分析的范围,再计算出的值,结合的范围求解出的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论