广西南宁三中2022-2023学年数学高一上期末考试试题含解析_第1页
广西南宁三中2022-2023学年数学高一上期末考试试题含解析_第2页
广西南宁三中2022-2023学年数学高一上期末考试试题含解析_第3页
广西南宁三中2022-2023学年数学高一上期末考试试题含解析_第4页
广西南宁三中2022-2023学年数学高一上期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下列区间中,函数单调递增的区间是()A. B.C. D.2.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为()A. B.C. D.3.已知全集,集合,集合,则集合为A. B.C. D.4.设,,则()A. B.C. D.5.下列与的终边相同的角的集合中正确的是()A. B.C. D.6.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.7.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件8.设函数,A.3 B.6C.9 D.129.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a210.在正方体中,为棱的中点,则A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____12.已知函数,若存在,使得f()=g(),则实数a的取值范围为___13.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.14.使得成立的一组,的值分别为_____.15.已知函数,若时,恒成立,则实数k的取值范围是_____.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.新冠病毒怕什么?怕我们身体的抵抗力和免疫力!适当锻炼,合理休息,能够提高我们身体的免疫力,抵抗各种病毒.某小区为了调查居民的锻炼身体情况,从该小区随机抽取了100为居民,记录了他们某天的平均锻炼时间,其频率分别直方图如下:(1)求图中的值和平均锻炼时间超过40分钟的人数;(2)估计这100位居民锻炼时间的平均数(同一组中的数据用该组区间的中点值代表)和中位数17.计算或化简:(1);(2)18.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?19.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由20.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.21.已知函数的部分图象如图所示()求函数的解析式()求函数在区间上的最大值和最小值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数2、C【解析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和3、C【解析】,选C4、D【解析】解出不等式,然后可得答案.【详解】因为,所以故选:D5、C【解析】由任意角的定义判断【详解】,故与其终边相同的角的集合为或角度制和弧度制不能混用,只有C符合题意故选:C6、A【解析】设出幂函数,求出幂函数代入即可求解.【详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【点睛】本题考查幂函数,需掌握幂函数的定义,属于基础题.7、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C8、C【解析】.故选C.9、B【解析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B10、C【解析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论【详解】画出正方体,如图所示对于选项A,连,若,又,所以平面,所以可得,显然不成立,所以A不正确对于选项B,连,若,又,所以平面,故得,显然不成立,所以B不正确对于选项C,连,则.连,则得,所以平面,从而得,所以.所以C正确对于选项D,连,若,又,所以平面,故得,显然不成立,所以D不正确故选C【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:12、【解析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【详解】因为,所以,故,即因为,依题意得,解得故答案为:.13、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论14、,(不唯一)【解析】使得成立,只需,举例即可.【详解】使得成立,只需,所以,,使得成立的一组,的值分别为,故答案为:,(不唯一)15、【解析】当时,,当时,,又,如图所示:当时,在处取得最大值,且,令,则数列是以1为首项,以为公比的等比数列,∴,∴,若时,恒成立,只需,当上,均有恒成立,结合图形知:,∴,∴,令,,当时,,∴,∴,当时,,,∴,∴最大,∴,∴.考点:1.函数图像;2.恒成立问题;3.数列的最值.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),平均锻炼时间超过40分钟的人数为18人(2)100位居民锻炼时间的平均数为分钟,中位数约为分钟【解析】(1)由频率和为1,列方程求解出的值,由频率分布直方图求出平均锻炼时间超过40分钟的频率,再由频率乘以100可得结果,(2)利用平均数定义直接求解,由频率分直方图判断出中位数在30-40分钟这一组,然后列方程求解即可【小问1详解】由频率分布直方图可知,解得,由频率分布直方图求出平均锻炼时间超过40分钟的频率为,所以平均锻炼时间超过40分钟的人数为人,【小问2详解】这100位居民锻炼时间的平均数为(分钟),因为,,所以中位数在锻炼时间为30-40分钟这一组,设中位数为,则,解得(分钟)17、(1)(2)1【解析】(1)根据指数幂的运算算出答案即可;(2)根据对数的运算算出答案即可.【小问1详解】【小问2详解】18、(1)400;(2)不能获利,至少需要补贴35000元.【解析】(1)每月每吨的平均处理成本为,利用基本不等式求解即得最低成本;(2)写出该单位每月的获利f(x)关于x的函数,整理并利用二次函数的单调性求出最值即可作答.【小问1详解】由题意可知:,每吨二氧化碳的平均处理成本为:,当且仅当,即时,等号成立,∴该单位每月处理量为400吨时,每吨平均处理成本最低;【小问2详解】该单位每月的获利:,因,函数在区间上单调递减,从而得当时,函数取得最大值,即,所以,该单位每月不能获利,国家至少需要补贴35000元才能使该单位不亏损.19、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,当且仅当,即,解得,所以.③当时,图象开口向上,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,,即,解得,所以.综上,存在实数,使函数于在区间内有且只有一个点.【点睛】关键点睛:本题主要考查了求一元二次函数的值域问题,以及函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数图象的交点个数问题,结合函数的性质求解是解答的关键,着重考查转化思想,以及推理与运算能力.20、(1);(2)答案见解析.【解析】(1)当时,求出集合再根据并集定义求;(2)选择有AB,列不等式求解即可;选择有同样列出不等式求解;选择

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论