安徽省全国示范高中名校2022-2023学年高一上数学期末质量检测模拟试题含解析_第1页
安徽省全国示范高中名校2022-2023学年高一上数学期末质量检测模拟试题含解析_第2页
安徽省全国示范高中名校2022-2023学年高一上数学期末质量检测模拟试题含解析_第3页
安徽省全国示范高中名校2022-2023学年高一上数学期末质量检测模拟试题含解析_第4页
安徽省全国示范高中名校2022-2023学年高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.满足的集合的个数为()A. B.C. D.2.若集合,则A. B.C. D.3.两圆和的位置关系是A.相离 B.相交C.内切 D.外切4.已知的值为A.3 B.8C.4 D.5.已知正弦函数f(x)的图像过点,则的值为()A.2 B.C. D.16.若是的重心,且(,为实数),则()A. B.1C. D.7.当生物死后,它体内的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半.2010年考古学家对良渚古城水利系统中一条水坝的建筑材料草裹泥)上提取的草茎遗存进行碳14检测,检测出碳14的残留量约为初始量的,以此推断此水坝建成的年代大概是公元前()(参考数据:,)A.年 B.年C.年 D.年8.已知,,,则的大小关系A. B.C. D.9.若xlog34=1,则4x+4–x=A.1 B.2C. D.10.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则_________.12.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____13.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.14.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________15.若函数,则________16.如果,且,则的化简为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知一次函数是上的增函数,,且.(1)求的解析式;(2)若在上单调递增,求实数的取值范围.18.求下列各式的值:(1);(2)19.已知向量,,且.(1)的值;(2)若,,且,求的值20.已知向量,向量分别为与向量同向的单位向量.(Ⅰ)求向量与的夹角;(Ⅱ)求向量的坐标.21.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.2、D【解析】详解】集合,所以.故选D.3、B【解析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B.4、A【解析】主要考查指数式与对数式的互化和对数运算解:5、C【解析】由题意结合诱导公式有:.本题选择C选项.6、A【解析】若与边的交点为,再由三角形中线的向量表示即可.【详解】若与边交点为,则为边上的中线,所以,又因为,所以故选:A【点睛】此题为基础题,考查向量的线性运算.7、B【解析】根据碳14的半衰期为5730年,即每5730年含量减少一半,设原来的量为,经过年后变成了,即可列出等式求出的值,即可求解.【详解】解:根据题意可设原来的量为,经过年后变成了,即,两边同时取对数,得:,即,,,以此推断此水坝建成的年代大概是公元前年.故选:B.8、D【解析】利用指数函数与对数函数的单调性即可得出【详解】∵0<a=0.71.3<1,b=30.2>1,c=log0.25<0,∴c<a<b故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题9、D【解析】条件可化为x=log43,运用对数恒等式,即可【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【点睛】本题考查对数性质的简单应用,属于基础题目10、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.12、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.13、①.②.【解析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;14、4、5、6【解析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力15、0【解析】令x=1代入即可求出结果.【详解】令,则.【点睛】本题主要考查求函数的值,属于基础题型.16、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用待定系数法,设()代入,得方程组,可求出,即求出函数解析式;(2)图象开口向上,故只需令位于对称轴右侧即即可.试题解析:(1)由题意设(),从而,所以,解得或(不合题意,舍去)所以的解析式为.(2),则函数的图象的对称轴为直线,由已知得在上单调递增,则,解得.18、(1)-2;(2)18.【解析】(1)利用对数的运算性质化简求值即可.(2)由有理数指数幂与根式的关系及指数幂的运算性质化简求值.【小问1详解】原式【小问2详解】原式19、(1);(2)【解析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【点睛】该题考查的是有关三角恒等变换的问题,涉及到的知识点有向量数量积坐标公式,同角三角函数关系式,余弦的和角公式,利用角的三角函数值的大小,结合角的范围求角的大小,属于简单题目.20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)运用向量的数量积求解即可.(Ⅱ)先根据单位向量的概念求得,再求的坐标试题解析:(Ⅰ)因为向量,所以,,所以,又因为,所以.即向量与的夹角为(Ⅱ)由题意得,,所以即向量的坐标为21、(1)(2)【解析】(1)由幂函数定义列出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论