山东省七校联合体2022年高一数学第一学期期末预测试题含解析_第1页
山东省七校联合体2022年高一数学第一学期期末预测试题含解析_第2页
山东省七校联合体2022年高一数学第一学期期末预测试题含解析_第3页
山东省七校联合体2022年高一数学第一学期期末预测试题含解析_第4页
山东省七校联合体2022年高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.一个正三棱柱的三视图如图所示,则这个三棱柱的表面积为()A. B.C. D.2.已知角的终边过点,则()A. B.C. D.13.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}4.函数在区间上的最小值是A. B.0C. D.25.已知方程的两根为与,则()A.1 B.2C.4 D.66.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.7.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.8.若,,则等于()A. B.3C. D.9.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是10.已知函数,,则的零点所在的区间是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx212.在正三角形中,是上的点,,则________13.已知向量,且,则_______.14.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难人微;数形结合百般好,隔裂分家万事休,在数学学习和研究中,常用函数的图象来研究函数的性质.请写出一个在上单调递增且图象关于y轴对称的函数:________________15.若函数(常数),对于任意两个不同的、,当、时,均有(为常数,)成立,如果满足条件的最小正整数为,则实数的取值范围是___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,为等边三角形,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.17.已知函数.(1)用五点法作函数在区间上的图象;(2)解关于的方程.18.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围19.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B120.已知函数.(1)解关于不等式;(2)若对于任意,恒成立,求的取值范围.21.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由三视图可知,该正三棱柱的底面是边长为2cm的正三角形,高为2cm,根据面积公式计算可得结果.【详解】正三棱柱如图,有,,三棱柱的表面积为.故选:D【点睛】本题考查了根据三视图求表面积,考查了正三棱柱结构特征,属于基础题.2、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B3、A【解析】根据并集定义求解即可.【详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:A∪B={1,2,3,4},选项A正确,选项BCD错误.故选:A.4、A【解析】函数,可得的对称轴为,利用单调性可得结果【详解】函数,其对称轴为,在区间内部,因为抛物线的图象开口向上,所以当时,在区间上取得最小值,其最小值为,故选A【点睛】本题考查二次函数的最值,注意分析的对称轴,属于基础题.若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域.5、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D6、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.7、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A8、A【解析】根据已知确定,从而求得,进而求得,根据诱导公式即求得答案.【详解】因为,,所以,则,故,故选:A9、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B10、C【解析】由题意结合零点存在定理确定的零点所在的区间即可.【详解】由题意可知函数在上单调递减,且函数为连续函数,注意到,,,,结合函数零点存在定理可得的零点所在的区间是.本题选择C选项.【点睛】应用函数零点存在定理需要注意:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在(a,b)上单调且f(a)f(b)<0,则f(x)在(a,b)上只有一个零点.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.34##0.75②.-【解析】利用三角函数的定义和诱导公式求出结果【详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,12、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质13、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.14、(答案不唯一)【解析】利用函数的单调性及奇偶性即得.【详解】∵函数在上单调递增且图象关于y轴对称,∴函数可为.故答案为:.15、【解析】分析可知对任意的、且恒成立,且对任意的、且有解,进而可得出关于实数的不等式组,由此可解得实数的取值范围.详解】,因为,由可得,由题意可得对任意的、且恒成立,且对任意的、且有解,即,即恒成立,或有解,因为、且,则,若恒成立,则,解得;若或有解,则或,解得或;因此,实数的取值范围是.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析(2)见解析【解析】(Ⅰ)取的中点,连结,由三角形中位线定理可得,,结合已知,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(Ⅱ)由线面垂直的性质可得平面,得到,再由为等边三角形,得,结合线面垂直的判定可得平面,再由面面垂直的判定可得面面【详解】(Ⅰ)证明:取的中点,连结∵在中,,∵,∴,∴四边形为平行四边形∴又∵平面∴平面(Ⅱ)证:∵面,平面,∴,又∵为等边三角形,∴,又∵,∴平面,又∵,∴面,又∵面,∴面面17、(1)画图见解析;(2)或.【解析】(1)根据列表、描点、连线的基本步骤,画出函数在的大致图像即可;(2)由题意得:,解得或,,分类求解即可得解方程的解集.【详解】(1),∴,,的变化如下表:0200的图象如图:(2)令,则,或,,或,,的解集为:或.【点睛】用“五点法”作的简图,主要是通过变量代换,设,由取,,,,来求出相应的,通过列表,计算得出五点坐标,描点后得出图象18、(1);(2)【解析】(1)利用最值求出,根据得出,再由特殊值求出即可求解.(2)根据三角函数的图象变换得出,再由正弦函数在上单调即可求解.【详解】解:(1)由图可知,最小正周期,所以因为,所以,,,又,所以,故(2)由题可知,当时,因为在区间上不单调,所以,解得故的取值范围为19、(1)见解析;(2)见解析【解析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【点睛】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整20、(1)当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)【解析】(1)将不等式,转化成,分别讨论当时,当时,当时,不等式的解集.(2)将对任意,恒成立问题,转化为,恒成立,再利用均值不等式求的最小值,从而得到a的取值范围.【详解】(1)因为不等式所以即当时,解得当时,解得当时,解得综上:当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)因为对于任意,恒成立所以,恒成立所以,恒成立令因为当且仅当,即时取等号所以【点睛】本题主要考查了含参一元二次不等式的解法以及恒成立问题,还考查了转化化归的思想及运算求解的能力,属于中档题.21、(1);(2).【解析】从该班随机选1名学生,利用古典概型能求出该学生未

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论