四川省蓉城名校联盟2023届数学高一上期末联考试题含解析_第1页
四川省蓉城名校联盟2023届数学高一上期末联考试题含解析_第2页
四川省蓉城名校联盟2023届数学高一上期末联考试题含解析_第3页
四川省蓉城名校联盟2023届数学高一上期末联考试题含解析_第4页
四川省蓉城名校联盟2023届数学高一上期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.函数的一个零点所在的区间是()A. B.C. D.2.已知函数,则该函数的零点位于区间()A. B.C. D.3.将函数的图象向左平移个单位后得到函数的图象,则下列说法正确的是()A.图象的一条对称轴为 B.在上单调递增C.在上的最大值为1 D.的一个零点为4.设,则()A. B.C. D.5.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ B.18+C.21 D.186.已知函数f(x)=设f(0)=a,则f(a)=()A.-2 B.-1C. D.07.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B.C. D.8.设则的值为A. B.C.2 D.9.下列四组函数中,表示同一函数的一组是()A. B.C. D.10.为了得到的图象,可以将的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位11.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.12.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知集合,,则集合中的元素个数为___________.14.已知正数x、y满足x+=4,则xy的最大值为_______.15.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为_________16.设函数是定义在上的奇函数,且,则___________三、解答题(本大题共6小题,共70分)17.“百姓开门七件事,事事都会生垃圾,垃圾分类益处多,环境保护靠你我”,为了推行垃圾分类,某公司将原处理垃圾可获利万元的一条处理垃圾流水线,通过技术改造后,开发引进生态项目.经过测算,发现该流水线改造后获利万元与技术投入万元之间满足的关系式:.该公司希望流水线改造后获利不少于万元,其中为常数,且.(1)试求该流水线技术投入的取值范围;(2)求流水线改造后获利的最大值,并求出此时的技术投入的值.18.已知函数(且)的图象过点(1)求的值.(2)若.(i)求的定义域并判断其奇偶性;(ii)求的单调递增区间.19.(1)化简:(2)求值:20.已知函数(1)求的对称轴方程;(2)若在上,函数最小值为且有两个不相等的实数根,求实数m的取值范围21.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面22.如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据零点存在性定理,计算出区间端点的函数值即可判断;【详解】解:因为,在上是连续函数,且,即在上单调递增,,,,所以在上存在一个零点.故选:.【点睛】本题考查函数的零点的范围,注意运用零点存在定理,考查运算能力,属于基础题2、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题3、B【解析】对选项A,,即可判断A错误;对选项B,求出的单调区间即可判断B正确;对选项C,求出在的最大值即可判断C错误;对选项D,根据,即可判断D错误.详解】,.对选项A,因为,故A错误;对选项B,因为,.解得,.当时,函数的增区间为,所以在上单调递增,故B正确;对选项C,因为,所以,所以,,,故错误;对选项D,,故D错误.故选:B4、C【解析】先由补集的概念得到,再由并集的概念得到结果即可【详解】根据题意得,则故选:C5、A【解析】由题意,该多面体的直观图是一个正方体挖去左下角三棱锥和右上角三棱锥,如下图,则多面体的表面积.故选A.考点:多面体的三视图与表面积.6、A【解析】根据条件先求出的值,然后代入函数求【详解】,即,故选:A7、B【解析】由题,根据向量加减数乘运算得,进而得.【详解】解:因为在“赵爽弦图”中,若,所以,所以,所以,所以.故选:B8、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题9、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:10、A【解析】根据左加右减原则,只需将函数向左平移个单位可得到.【详解】,即向左平移个单位可得到.故选:A【点睛】本题考查正弦型函数的图像与性质,三角函数诱导公式,属于基础题.11、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.12、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小二、填空题(本大题共4小题,共20分)13、【解析】解不等式确定集合,解方程确定集合,再由交集定义求得交集后可得结论【详解】由题意,,∴,只有1个元素故答案为:114、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.15、4【解析】设扇形半径为,弧长为,则,解得考点:角的概念,弧度的概念16、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.三、解答题(本大题共6小题,共70分)17、(1);(2)当时,,此时;当时,,此时.【解析】(1)由题意得出,解此不等式即可得出的取值范围;(2)比较与的大小关系,分析二次函数在区间上的单调性,由此可得出函数的最大值及其对应的的值.【详解】(1),,由题意可得,即,解得,因此,该流水线技术投入的取值范围是;(2)二次函数的图象开口向下,且对称轴为直线.①当时,即当时,函数在区间上单调递增,在区间上单调递减,所以,;②当时,即当时,函数在区间上单调递减,所以,.综上所述,当时,;当时,【点睛】本题考查二次函数模型的应用,同时也考查了二次函数最值的求解,考查分类讨论思想的应用,属于中等题.18、(1);(2)(i)定义域为,是偶函数;(ii).【解析】(1)由可求得实数的值;(2)(i)根据对数的真数大于零可得出关于实数的不等式,由此可解得函数的定义域,然后利用函数奇偶性的定义可证明函数为偶函数;(ii)利用复合函数法可求得函数的增区间.【详解】(1)由条件知,即,又且,所以;(2).(i)由得,故的定义域为.因为,故是偶函数;(ii),因为函数单调递增,函数在上单调递增,故的单调递增区间为.19、(1);(2).【解析】(1)根据诱导公式化简求值即可得答案;(2)根据指数运算法则运算求解即可.【详解】解:(1)(2)20、(1),;(2).【解析】(1)应用二倍角正余弦公式、辅助角公式可得,根据余弦函数的性质求的对称轴方程.(2)由题设可得,画出的图象,进而由已知条件及数形结合思想求m的取值范围【小问1详解】由题设,,令,,可得,.∴的对称轴方程为,.【小问2详解】令,在上,而时有,且图象如下:又最小值为且有两个不相等的实数根,由上图知:,可得.21、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可以转化到平面中的某两条直线的垂直问题,而面面垂直的证明,可转化为线面垂直问题,也转化为证明二面角为直二面角.22、(1)见解析(2)【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可【详解】(1)证明:∵底面ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论