江西省新余市渝水区第一中学2023届高一上数学期末监测模拟试题含解析_第1页
江西省新余市渝水区第一中学2023届高一上数学期末监测模拟试题含解析_第2页
江西省新余市渝水区第一中学2023届高一上数学期末监测模拟试题含解析_第3页
江西省新余市渝水区第一中学2023届高一上数学期末监测模拟试题含解析_第4页
江西省新余市渝水区第一中学2023届高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.2.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3若某户居民本月缴纳的水费为90元,则此户居民本月的用水量为()A.17 B.18C.19 D.203.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c4.化为弧度是()A. B.C. D.5.函数f(x)=的定义域为A.[1,3)∪(3,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.函数的零点个数为()A.个 B.个C.个 D.个7.已知函数为偶函数,则A.2 B.C. D.8.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.10109.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.10.已知集合,若,则()A.-1 B.0C.2 D.311.下列函数中与函数是同一个函数的是()A. B.C. D.12.函数部分图像如图所示,则的值为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知幂函数的图象过点,则______.14.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.15.若函数fx=-x+3,x≤2,logax,x>2(a>0且a≠1).①若a=12,则f16.函数满足,则值为_____.三、解答题(本大题共6小题,共70分)17.(1)求值:;(2)已知,化简求值:18.已知实数是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.19.已知函数.(1)直接写出的单调区间,并选择一个单调区间根据定义进行证明;(2)解不等式.20.已知函数.(1)化简;(2)若,求下列表达式的值:①;②.21.已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.22.(1)计算:()0.5+(-3)-1÷0.75-2-;(2)设0<a<1,解关于x的不等式.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据奇偶性的定义判断可得答案.【详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.2、D【解析】根据给定条件求出水费与水价的函数关系,再由给定函数值计算作答.【详解】依题意,设此户居民月用水量为,月缴纳的水费为y元,则,整理得:,当时,,当时,,因此,由得:,解得,所以此户居民本月的用水量为.故选:D3、C【解析】利用指数函数与对数函数的单调性即可得出【详解】∵a=22.5>1,<0,,∴a>c>b,故选C【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题4、D【解析】根据角度制与弧度制的互化公式,正确运算,即可求解.【详解】根据角度制与弧度制的互化公式,可得.故选:D.5、D【解析】由根式内部的代数式大于等于0,分式的分母不为0两类不等式组求解【详解】要使原函数有意义,需满足,解得x≥1.∴函数f(x)=的定义域为[1,+∞)故选D.【点睛】本题考查函数的定义域及其求法,解题的关键是是根式内部的代数式大于等于0,分式的分母不为06、C【解析】根据给定条件直接解方程即可判断作答.详解】由得:,即,解得,即,所以函数的零点个数为2.故选:C7、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D9、A【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键10、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C11、B【解析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数的定义为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数;对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数;对于C中,函数与函数的对应法则不同,不是同一函数;对于D中,函数的定义域为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数.故选:B.12、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.二、填空题(本大题共4小题,共20分)13、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.14、36【解析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:依题意、cm,所以,即cm,所以;故答案为:15、①.-2②.1<a≤2【解析】先计算f-1的值,再计算ff-1【详解】当a=12时,所以f-1所以ff当x≤2时,fx当x=2时,fx=-x+3取得最小值当0<a<1时,且x>2时,f(x)=log此时函数无最小值.当a>1时,且x>2时,f(x)=log要使函数有最小值,则必须满足loga2≥1,解得故答案为:-2;1<a≤2.16、【解析】求得后,由可得结果.【详解】,,.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】(1)由指数和对数的运算公式直接化简可得;(2)利用诱导公式化简目标式,然后分子分母同时除以,将已知代入可得.【详解】(1)原式(2)原式,∵,∴原式18、(1);(2);(3).【解析】(1)由是定义在上的奇函数,利用可得的值;(2)化简利用指数函数的值域以及不等式的性质可得函数的值域;(3)应用参数分离可得利用换元法可得,,转化为,,转化为求最值即可求解.【详解】(1)因为是定义在上的奇函数,所以对于恒成立,所以,解得,当时,,此时,所以时,是奇函数.(2)由(1)可得,因为,可得,所以,所以,所以,所以函数的值域为;(3)由可得,即,可得对于恒成立,令,则,函数在区间单调递增,所以当时最大为,所以.所以实数的取值范围是.【点睛】方法点睛:求不等式恒成立问题常用分离参数法若不等式(是实参数)恒成立,将转化为或恒成立,进而转化为或,求的最值即可.19、(1)在区间,上单调递增,在区间上单调递减,证明见解析(2)【解析】(1)根据增减函数的定义,利用作差法比较与0的大小即可;(2)根据三角函数的性质可得、,利用函数的单调性列出三角不等式,解不等式即可.【小问1详解】在区间,上单调递增,在区间上单调递减.①选区间进行证明.,,且,有,由,所以,由,所以,所以,,所以在区间上单调递增.②选区间进行证明.,,且,有,由,,所以,,所以在区间上单调递减.③选区间进行证明.参考②的证明,在区间上单调递增.【小问2详解】,因为,,在区间上单调递减,所以,(),所以,所求解集为.20、(1)(2)①,②;【解析】(1)直接利用诱导公式化简即可;(2)依题意可得,再根据同角三角函数的基本关系将弦化切,再代入计算可得;【小问1详解】解:因为,所以;【小问2详解】解:由,得①②21、(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0【解析】(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2)综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论