




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则2.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.3.30°的弧度数为()A. B.C. D.4.已知命题,,则p的否定是()A., B.,C., D.,5.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.90° B.45°C.60° D.30°6.已知为锐角,且,,则A. B.C. D.7.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.8.若函数在上是增函数,则实数k的取值范围是()A. B.C. D.9.已知函数,且,则A.3 B.C.9 D.10.已知集合,若,则()A.-1 B.0C.2 D.3二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.______________.12.若函数,,则_________;当时,方程的所有实数根的和为__________.13.化简=________14.在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.15.已知为奇函数,,则____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知实数,且满足不等式.(1)解不等式;(2)若函数在区间上有最小值,求实数的值.17.已知函数.(1)求的最小正周期和最大值;(2)讨论在上的单调性.18.已知函数对任意实数x,y满足,,当时,判断在R上的单调性,并证明你的结论是否存在实数a使f
成立?若存在求出实数a;若不存在,则说明理由19.(1)化简:.(2)已知都是锐角,,求值.20.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值21.已知函数的图象关于原点对称,且当时,(1)试求在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.2、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D3、B【解析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【点睛】本题考查了将角度制化为弧度制,属于基础题.4、D【解析】由否定的定义写出即可.【详解】p的否定是,.故选:D5、D【解析】设G为AD的中点,连接GF,GE,由三角形中位线定理可得,,则∠GFE即为EF与CD所成的角,结合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函数即可得到答案.【详解】解:设G为AD的中点,连接GF,GE则GF,GE分别为△ABD,△ACD的中线.∴,且,,且,则EF与CD所成角的度数等于EF与GE所成角的度数又EF⊥AB,∴EF⊥GF则△GEF为直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故选:D.6、B【解析】∵为锐角,且∴∵,即∴,即∴∴故选B7、B【解析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.8、C【解析】根据二次函数的对称轴在区间的左边,即可得到答案;【详解】由题意得:,故选:C9、C【解析】利用函数的奇偶性以及已知条件转化求解即可【详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【点睛】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.10、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、2【解析】由对数的运算法则直接求解.【详解】故答案为:212、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.13、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题14、【解析】根据二分法,取区间中点值,而,,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间15、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】分析:(1)由题意结合指数函数的单调性可得,结合函数的单调性和函数的定义域可得不等式的解集为.(2),令,结合反比例函数性质和对数函数的性质可得.详解:(1)由题意得:,∴,∴,解得.(2),令,当时,,,所以,所以.∵,∴的对数函数在定义域内递减,∴,∴.点睛:本题主要考查指数函数的性质,对数函数的性质,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.17、(1)最小正周期,最大值为;(2)在单调递增,在单调递减.【解析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得的最小正周期和最大值;(2)根据,利用正弦函数的单调性,分类讨论求得的单调性.【详解】(1),则的最小正周期为,当,即时,取得最大值为;(2)当时,,则当,即时,为增函数;当时,即时,为减函数,在单调递增,在单调递减.【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.18、(1)在上单调递增,证明见解析;(2)存在,.【解析】(1)令,则,根据已知中函数对任意实数满足,当时,易证得,由增函数的定义,即可得到在上单调递增;(2)由已知中函数对任意实数满足,,利用“凑”的思想,我们可得,结合(1)中函数在上单调递增,我们可将转化为一个关于的一元二次不等式,解不等式即可得到实数的取值范围试题解析:(1)设,∴,又,∴即,∴在上单调递增(2)令,则,∴∴,∴,即,又在上单调递增,∴,即,解得,故存在这样的实数,即考点:1.抽象函数及其应用;2.函数单调性的判断与证明;3.解不等式.【方法点睛】本题主要考查的是抽象函数及其应用,函数单调性的判断与证明,属于中档题,此类题目解题的核心思想就是对抽象函数进行变形处理,然后利用定义变形求出的大小关系,进而得到函数的单调性,对于解不等式,需要经常用到的利用“凑”的思想,对已知的函数值进行转化,求出常数所对的函数值,从而利用前面证明的函数的单调性进行转化为关于的一元二次不等式,因此正确对抽象函数关系的变形以及利用“凑”的思想,对已知的函数值进行转化是解决此类问题的关键.19、(1);(2)【解析】(1)通分,然后用辅助角公式计算即可;(2)先通过角范围求出,再通过,利用两角差的正弦公式计算即可.【详解】(1);(2)因为都是锐角,则,又,,,20、(1)见解析;(2);(3).【解析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【详解】(1)任意,,因为,,所以,所以,即是“1距”增函数(2).因为是“距”增函数,所以恒成立,因为,所以在上恒成立,所以,解得,因为,所以.(3)因为,,且为“2距”增函数,所以时,恒成立,即时,恒成立,所以,当时,,即恒成立,所以,得;当时,,得恒成立,所以,得,综上所述,得.又,因为,所以,当时,若,取最小值为;当时,若,取最小值.因为在R上是单调递增函数,所以当,的最小值为;当时的最小值为,即.【点睛】本题考查了函数的综合知识,考查了函数的单调性与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届辽宁省本溪市高三第二次模拟考试语文试题理试题含解析
- 广东省百校联考2024-2025学年高三下学期大联考(一)生物试题含解析
- 安徽沥青施工方案
- 教育学品德发展规律
- 操作系统安全机制
- 关于教育类的读书笔记
- 二零二四年十二月份跨境数字服务合同增值税处理
- 医院员工手册培训
- 自考《06831药理学》核心知识点必练试题库-附答案
- 心理培训课件
- 2025届高三化学二轮复习 化学工艺流程 课件
- 2024广东深圳市龙岗区产服集团“春雨”第二批招聘笔试笔试参考题库附带答案详解
- PLC应用技术课件 任务7. S7-1200 PLC控制电动机星三角启动(定时器)
- 2025年河南经贸职业学院单招职业适应性测试题库带答案
- 苏教版六年级数学下册第4单元第9课《练习八》课件
- 2025风电机组大型叶片全过程质量认证
- 2025年聚焦全国两会知识竞赛题库及答案(共100题)
- DB33T 2383-2021 公路工程强力搅拌就地固化设计与施工技术规范
- 25地基岩土的工程分类分类依据分类目的土岩石分类见表18至表111
- 2025年中国融通资产管理集团限公司春季招聘(511人)高频重点提升(共500题)附带答案详解
- GB/T 9755-2024合成树脂乳液墙面涂料
评论
0/150
提交评论