




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.82.已知实数满足,则函数的零点所在的区间是()A. B.C. D.3.设平面向量满足,且,则的最大值为A.2 B.3C. D.4.命题p:,的否定是()A., B.,C., D.,5.将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A. B.C. D.6.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.7.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m8.设函数,且在上单调递增,则的大小关系为A B.C. D.不能确定9.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p310.某几何体的三视图都是全等图形,则该几何体一定是()A.圆柱 B.圆锥C.三棱锥 D.球体11.已知函数,则()A.﹣1 B.C. D.312.已知集合,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从___________年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:,)14.已知角的终边过点,则___________.15.已知函数,将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到函数的解析式______16.幂函数的图象经过点,则________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(1)求函数图象的相邻两条对称轴的距离;(2)求函数在区间上的最大值与最小值,以及此时的取值18.已知,求的值.19.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.20.已知函数,(且.)(1)求的定义域,并判断函数的奇偶性;(2)设,对于,恒成立,求实数m的取值范围21.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.22.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.2、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.3、C【解析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件4、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.5、C【解析】函数,将其图像向右平移个单位后得到∵这个图像关于直线对称∴,即∴当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.6、A【解析】根据函数的奇偶性和周期性进行求解即可.【详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A7、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A8、B【解析】当时,,它在上单调递增,所以.又为偶函数,所以它在上单调递减,因,故,选B.点睛:题设中的函数为偶函数,故根据其在上为增函数判断出,从而得到另一侧的单调性和,故可以判断出.9、A【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.10、D【解析】任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆【详解】球、长方体、三棱锥、圆锥中,任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是等圆,故答案为:D【点睛】本题考查简单空间图形的三视图,本题解题的关键是看出各个图形的在任意方向上的视图,本题是一个基础题11、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.12、D【解析】求出集合A,再求A与B的交集即可.【详解】∵,∴.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2021【解析】根据条件列指数函数,再解指数不等式得结果.【详解】设快递行业产生的包装垃圾为万吨,表示从2015年开始增加的年份数,由题意可得,,得,两边取对数可得,∴,得,解得,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为:202114、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.15、【解析】根据三角函数图象的变换可得答案.【详解】将函数图象上各点的横坐标缩短到原来的倍,得,再将得到的图象向右平移个单位得故答案为:16、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)时,取得最大值为3;当时,取得最小值为【解析】利用倍角公式降幂,再由辅助角公式可把函数化简为(1)求出函数的半周期得答案;(2)由的范围求出的范围,利用正弦函数的性质可求原函数的最值及使原函数取得最值时的值详解】.(1)函数图象的相邻两条对称轴的距离为;(2),∴当,即时,取得最大值为3;当,即时,取得最小值为【点睛】本题考查型函数的图象与性质、倍角公式与两角和的正弦的应用,是基础题18、【解析】首先根据正切两角和公式得到,再利用诱导公式和二倍角公式化简得到,再分子、分母同除以求解即可.【详解】因为,解得.所以.19、见解析【解析】连接AF并延长交BC于M.连接PM,因为AD∥BC,∴,又,∴,所以EF∥PM,从而得证.试题解析:连接AF并延长交BC于M.连接PM.因AD∥BC,所以=.又由已知=,所以=.由平面几何知识可得EF∥PM,又EF⊄平面PBC,PM⊂平面PBC,所以EF∥平面PBC.20、(1)定义域为;为奇函数;(2)【解析】(1)由函数的定义域满足,可得其定义域,由可判断其奇偶性.(2)先由对数型函数的定义域可得,当时,由对数函数的单调性可得在上恒成立,即在上恒成立,即可得出答案.【详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;(2)对于,恒成立,由,则,又,则由,即在上恒成立.由,即在上恒成立.由,可得时,y取得最小值8,则,因此可得,时,的取值范围是:【点睛】关键点睛:本题考查对数型函数的定义域和奇偶性的判断,不等式恒成立求参数问题,解答本题的关键是由对数型函数的定义域则满足,可得,然后将问题化为由,即在上恒成立,属于中档题.21、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一演出晚会活动方案
- 六一礼物征集活动方案
- 六一童心公司活动方案
- 六一美术活动方案
- 六一风车活动方案
- 医疗编制考试试题及答案
- 药剂师考试试题及答案
- 药剂考试试题及答案大全
- 兰州亲子植树活动方案
- 兰州慢摇吧活动方案
- 原子荧光分析(汞)原始记录2
- 北师大版五下书法《第6课戈字旁》课件
- 铁路TBT3089SNS柔性防护网技术手册
- (高清正版)T_CAGHP 054—2019 地质灾害治理工程质量检验评定标准(试行)
- 物流招标文件模板(完整版)
- 国家开放大学电大本科《设施园艺学》2023-2024期末试题及答案(试卷代号:1329)
- 关于地理高考四大能力要求解读
- 空气动力学PPT课件
- 广西地方标准《闽楠栽培技术规程》(征求意见稿)
- 室内灯具系列专业英语词汇
- 医科大学附属医院十八项核心制度汇编
评论
0/150
提交评论