浙江省湖州市天略外国语学校2022-2023学年高一上数学期末考试模拟试题含解析_第1页
浙江省湖州市天略外国语学校2022-2023学年高一上数学期末考试模拟试题含解析_第2页
浙江省湖州市天略外国语学校2022-2023学年高一上数学期末考试模拟试题含解析_第3页
浙江省湖州市天略外国语学校2022-2023学年高一上数学期末考试模拟试题含解析_第4页
浙江省湖州市天略外国语学校2022-2023学年高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④2.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.3.已知,,则的值等于()A. B.C. D.4.已知,,且满足,则的最小值为()A.2 B.3C. D.5.若且,则下列不等式中一定成立的是A. B.C. D.6.下列四组函数中,表示同一函数的是()A. B.C D.7.命题P:“,”的否定为A., B.,C., D.,8.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.9.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则10.若,,则sin=A. B.C. D.11.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约米,肩宽约为米,“弓”所在圆的半径约为米,你估测一下掷铁饼者双手之间的距离约为(参考数据:,)()A.米 B.米C.米 D.米12.已知函数,当时.方程表示的直线是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.14.设函数,若关于x方程有且仅有6个不同的实根.则实数a的取值范围是_______.15.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.16.函数的定义域是______________.三、解答题(本大题共6小题,共70分)17.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).18.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.19.若函数是奇函数(),且,.(1)求实数,,的值;(2)判断函数在上的单调性,并利用函数单调性的定义证明.20.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故产生原因的一个重要因素.在一个限速为40km/h的弯道上,现场勘查测得一辆事故汽车的刹车距离略超过10米.已知这种型号的汽车的刹车距离(单位:m)与车速(单位:km/h)之间满足关系式,其中为常数.试验测得如下数据:车速km/h20100刹车距离m355(1)求的值;(2)请你判断这辆事故汽车是否超速,并说明理由21.已知函数,其中(1)判断函数的奇偶性并证明;(2)求函数的值域22.已知角的终边落在直线上,且.(1)求的值;(2)若,,求的值.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】依次判断四种变换方式的结果是否符合题意,选出正确变换【详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【点睛】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上2、A【解析】由扇形面积公式计算【详解】由题意,故选:A3、B【解析】由题可分析得到,由差角公式,将值代入求解即可【详解】由题,,故选:B【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题4、C【解析】由题意得,根据基本不等式“1”的代换,计算即可得答案.【详解】因为,所以,所以,当且仅当时,即,时取等号所以的最小值为.故选:C5、D【解析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等6、A【解析】求得每个选项中函数的定义域,结合对应关系是否相等,即可容易判断.【详解】对于A:,,定义域均为,两个函数的定义域和对应关系都相同,表示同一函数;对于B:的定义域为R,的定义域为,两个函数的定义域不同,不是同一函数;对于:的定义域为,的定义域为,两个函数的定义域不同,不是同一函数;对于D:的定义域为,的定义域为或,两个函数的定义域不同,不是同一函数.故选:A.【点睛】本题考查函数相等的判断,属简单题;注意函数定义域的求解.7、B【解析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可【详解】解:命题P:“,”的否定是:,故选B【点睛】本题考察了“全称命题”的否定是“特称命题”,属于基础题.8、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题9、B【解析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【点睛】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.10、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围11、C【解析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则的长度为,故扇形的圆心角为,故.故选:C.12、C【解析】先利用对数函数的性质得到所以,再利用直线的斜率和截距判断.【详解】因为时,,所以则直线的斜率为,在轴上的截距故选:C二、填空题(本大题共4小题,共20分)13、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.14、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.15、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.16、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.三、解答题(本大题共6小题,共70分)17、⑴见解析;⑵见解析.【解析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转证线面垂直平面,易证,从而问题得以解决.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,平面,又,平面,平面,,平面,平面,矩形是正方形,,平面,,平面又平面,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即,所以是奇函数.【小问3详解】解:由(1)知,函数在上单调递增,又因为x是增函数,所以是上的增函数,由,可得,由,可得,因为奇函数,所以,所以原不等式可化为,则,解得,所以原不等式的解集为19、(1),,;(2)在上为增函数,证明见解析.【解析】(1)根据题意,由奇函数的性质可得,进而可得,解可得、、的值,即可得答案;(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可【详解】解:(1)根据题意,函数是奇函数(),且,则,又由,则有,且,解得,,.(2)由(1)可得:,函数在上为增函数证明:设任意的,,又由,则且,,则有,故函数在上为增函数【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是求出、、的值,属于基础题20、(1)(2)超速,理由见解析【解析】(1)将表格中的数据代入函数的解析式建立方程组即可求得答案;(2)根据(1)建立不等式,进而解出不等式,最后判断答案.【小问1详解】由题意得,解得.【小问2详解】由题意知,,解得或(舍去)所以该车超速21、(1)是偶函数,证明见解析(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论