版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知圆与圆相离,则的取值范围()A. B.C. D.2.若,,,则a,b,c的大小关系是A. B.C. D.3.下列每组函数是同一函数的是A.f(x)=x-1, B.f(x)=|x-3|,C.,g(x)=x+2 D.,4.设集合,,,则A. B.C. D.5.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()A. B.C. D.6.如图所示,已知全集,集合,则图中阴影部分表示的集合为()A. B.C. D.7.已知函数是定义在R上的偶函数,且在区间单调递增.若实数a满足,则a的取值范围是A. B.C. D.8.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米9.已知函数,则的概率为A. B.C. D.10.下列函数中,与函数有相同图象的一个是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数,则__________.12.已知函数,若是的最大值,则实数t的取值范围是______13.幂函数为偶函数且在区间上单调递减,则________,________.14.已知点,若,则点的坐标为_________.15.若直线与垂直,则________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,.(1)若,求;(2)若,求实数的取值范围.17.(1)一个半径为的扇形,若它的周长等于,那么扇形的圆心角是多少弧度?扇形面积是多少?(2)角的终边经过点P(,4)且cos=,则的值18.已知函数f(x)=(1)若f(x)有两个零点x1、x2,且x1(2)若命题“∃x∈R,fx≤-719.已知集合,函数的定义域为集合.(1)若,求实数的取值范围;(2)求满足的实数的取值范围.20.已知直线经过点和点.(Ⅰ)求直线的方程;(Ⅱ)若圆的圆心在直线上,并且与轴相切于点,求圆的方程21.已知函数(1)求的对称轴方程;(2)若在上,函数最小值为且有两个不相等的实数根,求实数m的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法2、C【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案.【详解】由题意,根据实数指数函数的性质,可得,根据对数的运算性质,可得;故选C【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3、B【解析】分析:根据题意,先看了个函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.详解:对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选B.点睛:本题主要考查了判断两个函数是否是同一个函数,其中解答中考查了函数的定义域的计算和函数的三要素的应用,着重考查了推理与计算能力,属于基础题.4、B【解析】,,则=,所以故选B.5、A【解析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选A.考点:动点问题的函数图象;二次函数的图象.6、A【解析】根据文氏图表示的集合求得正确答案.【详解】文氏图表示集合为,所以.故选:A7、C【解析】函数是定义在上的偶函数,∴,等价为),即.∵函数是定义在上的偶函数,且在区间单调递增,∴)等价为.即,∴,解得,故选项为C考点:(1)函数的奇偶性与单调性;(2)对数不等式.【思路点晴】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用根据函数的奇偶数和单调性之间的关系,综合性较强.由偶函数结合对数的运算法则得:,即,结合单调性得:将不等式进行等价转化即可得到结论.8、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D9、B【解析】由对数的运算法则可得:,当时,脱去符号可得:,解得:,此时;当时,脱去符号可得:,解得:,此时;据此可得:概率空间中的7个数中,大于1的5个数满足题意,由古典概型公式可得,满足题意的概率值:.本题选择B选项.10、B【解析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【点睛】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先求的值,再求的值.【详解】由题得,所以.故答案为【点睛】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握水平,属于基础题.12、【解析】先求出时最大值为,再由是的最大值,解出t的范围.【详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:13、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.14、(0,3)【解析】设点的坐标,利用,求解即可【详解】解:点,,,设,,,,,解得,点的坐标为,故答案为:【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题15、【解析】根据两直线垂直的等价条件列方程,解方程即可求解.【详解】因为直线与垂直,所以,解得:,故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)根据题意,分别求出集合、,即可得到;(2)根据题意得,结合,即可得到实数的取值范围.【详解】(1)当时,,或,因此.(2)由(1)知,或,故,又因,所以,解得,故实数的取值范围是17、(1),(2)【解析】(1)设弧长为,所对圆心角为,则=,即=因为所以的弧度数是,从而(2)角的终边经过点P(,4),所以,所以.所以原式=18、(1)a=±1;(2)-2,2.【解析】(1)由已知条件可得Δ>0,结合韦达定理可求得实数a(2)由已知可知,命题“∀x∈R,x2-2ax+8-a2>0【小问1详解】解:由已知可得Δ=4a2-41-由韦达定理可得x1+x所以,x1-x2故a=±1.【小问2详解】解:由题意可知,∀x∈R,x则判别式Δ'=4a所以,实数a的取值范围是-2,2.19、(1)或;(2)或.【解析】(1)由知4满足函数的定义域,由此可得,解不等式可得所求范围.(2)由可得,再根据的大小关系求得集合A,然后根据转化为关于实数的不等式组,解不等式组可得所求范围试题解析:(1)因为,∴,解得或.∴实数的取值范围为(2)由于,当时,即时,,函数无意义,∴,由,得,解得,∴.①当,即时,,由得,解得;②当,即时,,,此时不满足;③当,即时,,由得,解得.又,故.综上或∴实数的取值范围是或.点睛:(1)解答本题时要注意分类讨论的运用,根据实数的不同的取值得到不同的集合;另外还应注意转化思想的运用,在本题中将集合间的包含关系转化为不等式组求解(2)对于题中的对数函数,要注意定义域的限制,特别是在本题中得到这一隐含条件是被容易忽视的问题20、(Ⅰ)x﹣y﹣1=0;(Ⅱ)(x+2)2+(y﹣3)2=4【解析】(Ⅰ)由两点式,可得直线l的方程;(Ⅱ)利用圆C的圆心在直线l上,且与y轴相切于点,确定圆心坐标与半径,即可求圆C的方程试题解析:(Ⅰ)由已知,直线的斜率,所以,直线的方程为.(Ⅱ)因为圆的圆心在直线上,可设圆心坐标为,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地理人口与环境人口合理容量课件
- 2024届陕西省窑店中学下学期高三数学试题二模考试试卷
- DB11∕T 1322.63-2019 安全生产等级评定技术规范 第63部分:燃气和水力发电企业
- 春节春联模板范例
- 办公室述职报告
- 5年中考3年模拟试卷初中道德与法治九年级下册01第1课时中国担当
- 中职食品安全课件
- 基础护理安全课件
- 人教版小学四年级音乐下册教案
- 2024-2025学年专题19.3 安全用电-九年级物理人教版含答案
- 学前儿童社会教育电子课件全
- 眩晕的诊断思路及抢救流程图
- 贵州省生态文明教育读本学期末考试大一下学期
- 高中体育与健康-足球脚背外侧运球教学课件设计
- 2023学年完整公开课版水的组成
- 第六讲-中古日本文学课件
- 《小萝卜头的故事》课件3
- 西方经济学(上下册)PPT全套教学课件
- 2023学年完整公开课版粤绣
- 中国稳定性冠心病诊断与治疗指南
- 论事业单位综合办公室行政管理工作
评论
0/150
提交评论