版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=2.已知,则A. B.C. D.3.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.24.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本中的中年职工人数为()A.10 B.30C.50 D.706.圆与圆有()条公切线A.0 B.2C.3 D.47.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.8.已知向量,且,则实数=A B.0C.3 D.9.是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B.C. D.10.已知非空集合,则满足条件的集合的个数是()A.1 B.2C.3 D.411.设m、n是两条不同的直线,、是两个不同的平面,有下列四个命题:如果,,那么;如果,,那么;如果,,,那么;如果,,,那么其中错误的命题是A. B.C. D.12.将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______14.已知集合,则______15.已知函数定义域是________(结果用集合表示)16.函数(a>0且a≠1)的图象恒过点定,若角终边经过点,则___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,()(1)当时,求不等式的解集;(2)若对任意,不等式恒成立,求的取值范围;(3)若对任意,存在,使得,求的取值范围18.已知函数(1)求的值;(2)若对任意的,都有求实数的取值范围.19.已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,关于的方程有实数根,求实数的取值范围.20.在三棱锥中,和是边长为等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.21.已知直线经过直线与的交点.(1)点到直线的距离为3,求直线的方程;(2)求点到直线的距离的最大值,并求距离最大时的直线的方程22.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.2、D【解析】考点:同角间三角函数关系3、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值4、B【解析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.5、A【解析】利用分层抽样的等比例性质,结合已知求样本中中年职工人数.【详解】由题意知,青年职工人数:中年职工人数:老年职工人数=350:250:150=7:5:3由样本中的青年职工为14人,可得中年职工人数为10故选:A6、B【解析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B7、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.8、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.9、B【解析】设,,∴,,,∴.【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是将“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来10、C【解析】由题意可知,集合为集合的子集,求出集合,利用集合的子集个数公式可求得结果.【详解】,所以满足条件的集合可以为,共3个,故选:C.【点睛】本题考查集合子集个数的计算,考查计算能力,属于基础题.11、B【解析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得答案【详解】①如果α∥β,m⊂α,那么m∥β,故正确;②如果m⊥α,β⊥α,那么m∥β,或m⊂β,故错误;③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;④如果m∥β,m⊂α,α∩β=n,那么m∥n,故正确故答案为B【点睛】本题以命题的真假判断与应用为载体考查了空间直线与直线,直线与平面的位置关系及几何特征等知识点12、A【解析】由题意结合辅助角公式可得,进而可得g(x)=2sin,由三角函数的性质可得,化简即可得解.【详解】设f(x)=cosx+sinx=2sin,向左平移m个单位长度得g(x)=2sin,∵g(x)的图象关于y轴对称,∴,∴m=,由m>0可得m的最小值为.故选:A.【点睛】本题考查了辅助角公式及三角函数图象与性质的应用,考查了运算求解能力,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据余弦函数的定义可得答案.【详解】解:∵是角终边上的一点,∴故答案为:.14、【解析】∵∴,故答案为15、【解析】根据对数函数的真数大于0求解即可.【详解】函数有意义,则,解得,所以函数的定义域为,故答案为:16、【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可【详解】,且故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)或(2)(3)【解析】(1)将代入不等式,解该一元二次不等式即可;(2)转化为一元二次不等式恒成立问题,利用即可解得参数的范围;(3)对任意,存在,使得,转化为的值域包含于的值域.同时对值域的求解,需要根据二次函数对称轴与闭区间的相对位置进行讨论,最终解不等式组求解.【小问1详解】当时,由得,即,解得或所以不等式的解集为或小问2详解】由得,即不等式的解集是所以,解得所以的取值范围是小问3详解】当时,又①当,即时,对任意,所以,此时不等式组无解,②当,即时,对任意,所以2<m≤3,4-m2③当,即时,对任意,所以此时不等式组无解,④当,即时,对任意,所以此时不等式组无解综上,实数的取值范围是【点睛】关键点点睛,本题中“对任意,存在,使得”这一条件转化为函数值域的包含关系是解决问题的关键,而其中二次函数在闭区间上的值域问题,又需要针对对称轴与区间的相对位置进行讨论.18、(1)(2)【解析】(1)代入后,利用余弦的二倍角公式进行求解;(2)先化简得到,进而求出的最大值,求出实数的取值范围.【小问1详解】【小问2详解】因为x∈,所以2x+∈,所以当2x+=,即x=时,取得最大值.所以对任意x∈,等价于≤c.故实数c的取值范围是.19、(1),(2)【解析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最高点可求得的值,即可得的解析式,由正弦函数的对称中心可得对称中心;(2)由图象的平移变换求得的解析式,由正弦函数的性质可得的值域,令的取值为的值域,解不等式即可求解.【小问1详解】由题意可得:,可得,所以,因为,所以,可得,所以,由可得,因为,所以,,所以.令可得,所以对称中心为.【小问2详解】由题意可得:,当时,,,若关于的方程有实数根,则有实根,所以,可得:.所以实数的取值范围为.20、(1)见解析(2)见解析(3).【解析】由三角形中位线定理,得出,结合线面平行的判定定理,可得平面PAC;等腰和等腰中,证出,而,由勾股定理的逆定理,得,结合,可得平面ABC;由易知PO是三棱锥的高,算出等腰的面积,再结合锥体体积公式,可得三棱锥的体积【详解】,D分别为AB,PB的中点,又平面PAC,平面PAC平面如图,连接OC,O为AB中点,,,且同理,,又,,得、平面ABC,,平面平面ABC,D为PB的中点,结合,得棱锥的高为,体积为【点睛】本题给出特殊三棱锥,求证线面平行、线面垂直并求锥体体积,考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题21、(1)x=2或4x-3y-5=0(2)见解析【解析】(1)设过两直线的交点的直线系方程,再根据点到直线的距离公式,求出的值,得出直线的方程;(2)先求出交点P的坐标,由几何的方法求出距离的最大值【详解】(1)因为经过两已知直线交点直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,点到直线的距离为3,所以=3,解得λ=或λ=2,所以直线l的方程为x=2或4x-3y-5=0.(2)由解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,则d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高考语文复习知识清单第2章文学类文本阅读(一)小说专题07写小说文学短评(学生版+解析)
- 各种培训课件教学课件
- 二年级数学计算题专项练习1000题汇编集锦
- 肉鸭采购合同(2篇)
- 望庐山课件教学课件
- 南京工业大学浦江学院《实验艺术》2021-2022学年第一学期期末试卷
- 钢结构施工组织设计【超完美版】
- 多细胞生物体说课稿
- 《长方形的面积》说课稿
- 《小数的加减法》说课稿
- 第九套广播体操动作要领及图解
- 看图写话二年级公开课已修改版
- 安徽省淮北市地方婚礼流程资料
- 附件3-4欧曼金融服务经销商融资业务介绍
- 中医骨伤科学9肩周炎上肢伤筋
- 五年级分数乘法口算练习
- 客户服务管理七大原则
- 斜井常闭式防跑车装置设计说明书
- 购买文件登记表.doc
- [山东]建筑工程施工技术资料管理规程表格
- 《葫芦丝演奏的入门练习》教学设计
评论
0/150
提交评论