版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为()A. B.C. D.2.已知函数.若关于x的方程在上有解,则实数m的取值范围是()A. B.C. D.3.下列函数中既是奇函数又在定义域上是单调递增函数的是()A. B.C. D.4.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.5.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.6.函数在的图象大致为A. B.C. D.7.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.8.当时,在同一坐标系中,函数与的图象是()A. B.C. D.9.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.10.设,且,则()A. B.10C.20 D.100二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________12.设,则______.13.已知点,若,则点的坐标为_________.14.已知α∈.若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则=______.15.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=2(1)求证:AC1//(2)二面角B117.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间18.已知,且向量在向量的方向上的投影为,求:(1)与的夹角;(2).19.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.20.已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,,切点分别为,(1)若,试求点的坐标;(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;(3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标21.已知函数f(x)=2sin(ωx+φ)+1()的最小正周期为π,且(1)求ω和φ的值;(2)函数f(x)的图象纵坐标不变的情况下向右平移个单位,得到函数g(x)的图象,①求函数g(x)的单调增区间;②求函数g(x)在的最大值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有:12,13,14,23,24,34,一共6种,其中数字之积为偶数的有:12,14,23,24,34一共有5种,所以取出的2张卡片的数字之积为偶数的概率为,故选:D2、C【解析】先对函数化简变形,然后由在上有解,可知,所以只要求出在上即可【详解】,由,得,所以,所以,即,由在上有解,可知,所以,得,氢实数m的取值范围是,故选:C3、D【解析】结合初等函数的奇偶性和单调性可排除选项;再根据奇偶性定义和复合函数单调性的判断方法可证得正确.【详解】对A,∵是奇函数,在(一∞,0)和(0,+∞)上是单调递增函数,在定义域上不是递增函数,可知A错误;对B,不是奇函数,可知B错误;对C,不是单调递增函数,可知C错误;对D,,则为奇函数;当时,单调递增,由复合函数单调性可知在上单调递增,根据奇函数对称性,可知在上单调递增,则D正确.故选:D4、A【解析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.5、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.6、C【解析】当时,,去掉D;当时,,去掉B;因为,所以去A,选C.点睛:(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.7、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D8、B【解析】根据时指数函数与对数函数均为定义域内的增函数即可得答案.【详解】解:因,函数为指数函数,为对数函数,故指数函数与对数函数均为定义域内的增函数,故选:B.9、B【解析】求出,根据题意结合正弦函数图象可得答案.【详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.10、A【解析】根据指数式与对数的互化和对数的换底公式,求得,,进而结合对数的运算公式,即可求解.【详解】由,可得,,由换底公式得,,所以,又因为,可得故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:312、1【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【详解】由,可得,,所以.故答案为:.13、(0,3)【解析】设点的坐标,利用,求解即可【详解】解:点,,,设,,,,,解得,点的坐标为,故答案为:【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题14、-1【解析】根据幂函数,当为奇数时,函数为奇函数,时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f(x)=xα为奇函数,∴可取-1,1,3,又f(x)=xα在(0,+∞)上递减,∴α<0,故=-1.故答案为:-1.15、①.55②.8【解析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;8三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析(2)45°【解析】1设BC1∩B1C=E,连接ED,则2推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1解析:(1)在直三棱柱ABC-A1B则E为BC1的中点,连接∵D为AB的中点,∴ED//AC,又∵ED⊂平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D为AB中点,∴CD⊥AB,又∵BB1⊥平面ABC,CD⊂∴BB1⊥CD,又AB∩BB1∵B1D⊂平面ABB1A1,AB⊂平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1BD中,∴二面角B1-CD-B17、(1)最小正周期为T=π,最大值为(2)[kπ-58π,kπ【解析】(Ⅰ)函数的最小正周期为,函数的最大值为(II)由得函数的单调递增区间为[kπ-5π18、(1);(2)【解析】(1)由题知,进而得出,即可求得.(2)根据数量积的定义即可得出答案.【详解】解:(1)由题意,,所以.又因为,所以.(2).【点睛】本题考查了向量的夹角、向量的数量积,考查学生对公式的熟练程度,属于基础题.19、(1)(2)最大值为,最小值为【解析】(1)根据的定义域列出不等式即可求出;(2)可得,即可求出最值.【小问1详解】的定义域是,,因为的定义域是,所以,解得于是定义域为.【小问2详解】设.因为,即,所以当时,即时,取得最小值,值为;当时,即时,取得最大值,值为.20、(1)或;(2)或;(3)详见解析【解析】(1)点在直线上,设,由对称性可知,可得,从而可得点坐标.(2)分析可知直线的斜率一定存在,设其方程为:.由已知分析可得圆心到直线的距离为,由点到线的距离公式可求得的值.(3)由题意知,即.所以过三点的圆必以为直径.设,从而可得圆的方程,根据的任意性可求得此圆所过定点试题解析:解:(1)直线的方程为,点在直线上,设,由题可知,所以,解之得:故所求点的坐标为或(2)易知直线的斜率一定存在,设其方程为:,由题知圆心到直线的距离为,所以,解得,或,故所求直线的方程为:或(3)设,则的中点,因为是圆的切线,所以经过三点的圆是以为圆心,以为半径的圆,故其方程为:化简得:,此式是关于的恒等式,故解得或所以经过三点的圆必过定点或考点:1直线与圆的位置关系问题;2过定点问题21、(1);(2)①增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年黄山货运b2从业资格证考试卷
- 上海外国语大学《兽医流行病学专题》2023-2024学年第一学期期末试卷
- 大学生自检报告范文
- 婚前调查情况报告范文
- 市场调研 调研报告范文
- 上海师范大学《非物质文化遗产传承教育:泥塑》2023-2024学年第一学期期末试卷
- 上海农林职业技术学院《中小学生心理健康与辅导》2023-2024学年第一学期期末试卷
- 上海纽约大学《车辆工程创新创业讲座》2023-2024学年第一学期期末试卷
- 专项01:拼音-【中职专用】2025年职教高考学业考试语文二轮专项突破(福建专用)
- 上海民远职业技术学院《环境化学与监测实验》2023-2024学年第一学期期末试卷
- 支气管动脉造影护理
- 2024年度建筑工程有限公司股权转让合同3篇
- 校园春季安全
- 2024-2025学年度上学期九年级十二月联考英语试卷
- 2024-2025学年六上科学期末综合检测卷(含答案)
- 2024年债权投资协议6篇
- 【MOOC】工程力学-浙江大学 中国大学慕课MOOC答案
- 2024-2025学年北师大版八年级数学上册期末综合测试卷(含答案)
- 2024广州租房合同范本
- 菏泽学院中外教育史(高起专)复习题
- 分数的初步认识(单元测试)-2024-2025学年三年级上册数学期末复习 人教版
评论
0/150
提交评论