版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知实数满足,则函数的零点所在的区间是()A. B.C. D.2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为()A. B.C. D.3.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.4.已知,,,则a,b,c的大小关系为()A. B.C. D.5.设是定义在R上的奇函数,当时,(b为常数),则的值为()A.﹣6 B.﹣4C.4 D.66.若直线与互相平行,则()A.4 B.C. D.7.计算2sin2105°-1的结果等于()A. B.C. D.8.已知幂函数在上单调递减,则()A. B.5C. D.19.已知集合,则()A.0或1 B.C. D.或10.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.11.若,则下列不等式一定成立的是()A. B.C. D.12.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或二、填空题(本大题共4小题,共20分)13.不等式x2-5x+6≤0的解集为______.14.已知角的终边经过点,则的值为_______________.15.的化简结果为____________16.在内,使成立的x的取值范围是____________三、解答题(本大题共6小题,共70分)17.王先生发现他的几位朋友从事电子产品的配件批发,生意相当火爆.因此,王先生将自己的工厂转型生产小型电子产品的配件.经过市场调研,生产小型电子产品的配件.需投入固定成本为2万元,每生产万件,还需另投入万元,在年产量不足8万件时,(万元);在年产量不低于8万件时,(万元).每件产品售价为4元.通过市场分析,王先生生产的电子产品的配件都能在当年全部售完.(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)求年产量为多少万件时,王先生在电子产品的配件的生产中所获得的年利润最大?并求出年利润的最大值?18.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.19.(1)计算:;(2)化简:20.在平面直角坐标系中,已知角的顶点为坐标原点,始边为轴的正半轴,终边过点(1)求的值;(2)求的值21.给定函数,,,用表示,中的较大者,记为.(1)求函数的解析式并画出其图象;(2)对于任意的,不等式恒成立,求实数的取值范围.22.已知函数(1)若的定义域为R,求a的取值范围;
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.2、D【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有:12,13,14,23,24,34,一共6种,其中数字之积为偶数的有:12,14,23,24,34一共有5种,所以取出的2张卡片的数字之积为偶数的概率为,故选:D3、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.4、D【解析】利用指数函数和对数函数的单调性求解.【详解】因为,,,所以,故选:D5、B【解析】根据函数是奇函数,可得,求得,结合函数的解析式即可得出答案.【详解】解:因为是定义在R上的奇函数,当时,,,解得所以.故选:B.6、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.7、D【解析】.选D8、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.9、D【解析】由集合的概念可知方程只有一个解,且解为,分为二次项系数为0和不为0两种情形,即可得结果.【详解】因为为单元素集,所以方程只有一个解,且解为,当时,,此时;当时,,即,此时,故选:D.10、C【解析】先根据点在曲线上求出,然后根据即可求得的值【详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C11、B【解析】对于ACD,举例判断即可,对于B,利用不等式的性质判断【详解】解:对于A,令,,满足,但,故A错误,对于B,∵,∴,故B正确,对于C,当时,,故C错误,对于D,令,,满足,而,故D错误.故选:B.12、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.二、填空题(本大题共4小题,共20分)13、【解析】根据二次函数的特点即可求解.【详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.14、【解析】到原点的距离.考点:三角函数的定义.15、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.16、【解析】根据题意在同一个坐标系中画出在内的函数图像,由图求出不等式的解集【详解】解:在同一个坐标系中画出在内的函数图像,如图所示,则使成立的x的取值范围是,故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)当年产量为13万件时,王先生在电子产品的配件的生产中所获得的年利润最大,年利润的最大值为6万元.【解析】(1)根据题意列出和时的解析式即可;(2)分别求和时的最大利润,比较两个利润的大小即可.【小问1详解】∵每件商品售价为4元,则万件商品销售收入为万元,当时,;当时,.∴;【小问2详解】若,则.当时,取得最大值万元.若,则,当且仅当,即时,取得最大值6万元.∵,∴当年产量为13万件时,王先生在电子产品的配件的生产中所获得的年利润最大.年利润的最大值为6万元.18、(1);(2)天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元.【解析】(1)设出比例系数,根据题意得到建设费用y(万元)表示成P站与甲城距离x(km)的函数的解析式,再利用代入法求出比例系数,进而求出函数解析式、定义域;(2)利用配方法进行求解即可.【详解】(1)设比例系数为k,则又,,所以,即,所以(1)由(1)可得所以所以当时,y有最小值为1250万元所以天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元,19、(1);(2)【解析】(1)由题意利用对数的运算性质,计算求得结果(2)由题意利用诱导公式,计算求得结果【详解】解:(1)(2)20、(1)(2)当时,;当时,【解析】(1)根据三角函数的定义及诱导公式、同角三角函数基本关系化简求解;(2)分,分别由定义求出三角函数值求解即可.【小问1详解】由角的终边过点,得,所以【小问2详解】当时,,所以当时,,所以综上,当时,;当时,21、(1),作图见解析;(2).【解析】(1)根据题意,分类讨论,结合一元二次不等式的解法进行求解并画出图象即可;(2)构造新函数,利用分类讨论思想,结合二次函数的性质进行求解即可.【小问1详解】①当即时,,则,②当即或时,,则,故图象如下:【小问2详解】由(1)得,当时,,则在上恒成立等价于在上恒成立.令,,原问题等价于在上的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢结构网架工程施工分包合同协议书范本
- 2024年度租赁合同-加油站
- 2024版加工承揽合同规范本with标的明细3篇
- 二零二四年度路面标线施工技术创新与研发合同
- 事业单位合同范本湖南省
- 横沥工厂蔬菜配送合同范本
- 环境监控合同范本
- 小儿肛裂护理及治疗
- 2024年度电子商务产业园供应链管理服务合同
- 2024年度水泥船运时间延误索赔合同
- 计算机信息系统灾难恢复计划(完整版)资料
- 脚手架搭设及基本知识教程课件
- 特种作业人员体检表
- 冲积平原的形成(课件)-高考地理一轮复习课件
- 限高杆施工图 2
- 摄影培训课件:会议摄影拍摄技巧
- 岭南民俗文化-课件
- 【QC成果】提高地下室抗浮锚杆一次验收合格率
- 大学C语言设计冒泡排序和选择排序课件
- 挤出成型工艺及挤出模课件
- 高毒力肺炎克雷伯菌感染
评论
0/150
提交评论