甘肃省宕昌县第一中2022-2023学年高一上数学期末学业质量监测试题含解析_第1页
甘肃省宕昌县第一中2022-2023学年高一上数学期末学业质量监测试题含解析_第2页
甘肃省宕昌县第一中2022-2023学年高一上数学期末学业质量监测试题含解析_第3页
甘肃省宕昌县第一中2022-2023学年高一上数学期末学业质量监测试题含解析_第4页
甘肃省宕昌县第一中2022-2023学年高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知圆方程为,过该圆内一点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是()A.4 B.C.6 D.2.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是()A. B.C. D.3.已知全集,集合,集合,则集合为A. B.C. D.4.已知集合P=,,则PQ=()A. B.C. D.5.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.6.已知,且,则的最小值为A. B.C. D.7.从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为()A. B.C. D.8.若函数唯一的一个零点同时在区间、、、内,那么下列命题中正确的是A.函数在区间内有零点B.函数在区间或内有零点C.函数在区间内无零点D.函数在区间内无零点9.下列函数在其定义域上既是奇函数又是减函数的是A. B.C. D.10.若都是锐角,且,,则A. B.C.或 D.或二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则12.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________13.设函数,若其定义域内不存在实数,使得,则的取值范围是______14.已知正实数a,b满足,则的最小值为___________.15.设集合,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第位的子集是_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某种产品的成本是50元/件,试销阶段每件产品的售价(单位:元)与产品的日销售量(单位:件)之间有如下表所示的关系:/元60708090/件80604020(1)根据以上表格中的数据判断是否适合作为与的函数模型,并说明理由;(2)当每件产品的售价为多少时日利润(单位:元)最大,并求最大值.17.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.18.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由19.在平面直角坐标系中,已知点,,在圆上(1)求圆的方程;(2)过点的直线交圆于,两点.①若弦长,求直线的方程;②分别过点,作圆的切线,交于点,判断点在何种图形上运动,并说明理由.20.化简下列各式:(1);(2).21.已知函数,()求函数的单调区间;()若函数在上有两个零点,求实数的取值范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由圆的方程可知圆心为,半径,则过圆内一点的最长弦为直径,最短弦为该点与圆心连线的垂线段,进而求解即可【详解】由题,圆心为,半径,过圆内一点的最长弦为直径,故;当时,弦长最短,因为,所以,因为在直径上,所以,所以四边形ABCD的面积是,故选:C【点睛】本题考查过圆内一点弦长的最值问题,考查两点间距离公式的应用,考查数形结合思想2、C【解析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集;【详解】解:因为函数满足对任意的,有,即在上单调递减,又是定义在R上的偶函数,所以在上单调递增,又,所以,函数的大致图像可如下所示:所以当时,当或时,则不等式等价于或,解得或,即原不等式的解集为;故选:C3、C【解析】,选C4、B【解析】根据集合交集定义求解.【详解】故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.5、B【解析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.6、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题7、B【解析】根据独立重复试验的概率计算公式,准确计算,即可求解.【详解】由题意,该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为.故选:B.8、D【解析】有题意可知,函数唯一的一个零点应在区间内,所以函数在区间内无零点考点:函数的零点个数问题9、A【解析】选项是非奇非偶函数,选项是奇函数但在定义域的每个区间上是减函数,不能说是定义域上的减函数,故符合题意.10、A【解析】先计算出,再利用余弦的和与差公式,即可.【详解】因为都是锐角,且,所以又,所以,所以,,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).12、【解析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【点睛】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.13、【解析】按的取值范围分类讨论.【详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【点睛】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.14、##【解析】将目标式转化为,应用柯西不等式求取值范围,进而可得目标式的最小值,注意等号成立条件.【详解】由题设,,则,又,∴,当且仅当时等号成立,∴,当且仅当时等号成立.∴的最小值为.故答案为:.15、【解析】根据题意依次按“势”从小到大顺序排列,得到答案.【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:,,,,,,,.故排在第6的子集为.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)适合,理由见解析.(2)当每件产品售价为75元时日利润最大,且最大值为1250.【解析】(1)把,分别代入,求得,再代入检验成立;(2)设日利润为(单位:元),由(1)求得,根据二次函数的性质可求得最大值.【小问1详解】解:适合,理由如下:把,分别代入,得解得则,把,分别代入,检验成立.【小问2详解】解:设日利润为(单位:元),则,当时,,则当每件产品的售价为75元时日利润最大,且最大值为1250.17、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.18、(1)4;(2)见解析;(3)不存在.【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于点使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC与平面PAD相交,得出矛盾【点睛】本题考查直线与平面垂直的判定,棱锥的体积,平面与平面平行的判定定理,考查空间想象能力,逻辑推理能力.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19、(1)(2)【解析】(1)设圆的方程为:,将点,,分别代入圆方程列方程组可解得,,,从而可得圆的方程;(2)①由(1)得圆的标准方程为,讨论两种情况,当直线的斜率存在时,设为,则的方程为,由弦长,根据点到直线距离公式列方程求得,从而可得直线的方程;②,利用两圆公共弦方程求出切点弦方程,将代入切点弦方程,即可得结果.试题解析:(1)设圆方程为:,由题意可得解得,,,故圆方程为(2)由(1)得圆的标准方程为①当直线的斜率不存在时,的方程是,符合题意;当直线的斜率存在时,设为,则的方程为,即,由,可得圆心到的距离,故,解得,故的方程是,所以,方程是或②设,则切线长,故以为圆心,为半径的圆的方程为,化简得圆的方程为:,①又因为的方程为,②②①化简得直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论