计算机简单术语_第1页
计算机简单术语_第2页
计算机简单术语_第3页
计算机简单术语_第4页
计算机简单术语_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.笔记本概述英文名称为NoteBook,俗称笔记本电脑。笔记本电脑是台式PC的微缩与延伸产品,也是用户对电脑产品更高需求的必然产物。其主要优点:体积小、重量轻、携带方便,超轻超薄是其的主要发展方向,它的性能会越来越高,功能会更加丰富。其便携性和备用电源使移动办公成为可能,因此越来越受用户推崇,市场容量迅速扩展。笔记本的价格:影响笔记本电脑价格除了基本配置之外,最主要的还是笔记本电脑的结构类型。由于在结构工艺设计、散热处理材料、电池、显示屏等技术应用上的不同,越轻薄的笔记本电脑价格越高,因此在三种机型中,同等配置的笔记本电脑,3—spindle(全内置)笔记本电脑价格最低,2—Spindle笔记本电脑价格居中,1—Spindle(全外置,超轻薄)笔记本电脑价格最高。因此在选购笔记本电脑时不仅要看其配置,更应该注意其结构类型和外观。.CPU品牌笔记本电脑专用的CPU英文称MobileCPU(移动CPU),它除了追求性能,也追求低热量和低耗电,最早的笔记本电脑直接使用台式机的CPU,但是随CPU主频的提高,笔记本电脑狭窄的空间不能迅速散发CPU产生的热量,还有笔记本电脑的电池也无法负担台式CPU庞大的耗电量,所以开始出现专门为笔记本设计的MobileCPU,它的制造工艺往往比同时代的台式机CPU更加先进,因为MobileCPU中会集成台式机CPU中不具备的电源管理技术,而且会先采用更高的微米精度。主要生产厂家有Intel、AMD、全美达等。笔记本电脑专用的CPU英文称MobileCPU(移动CPU),它除了追求性能,也追求低热量和低耗电,最早的笔记本电脑直接使用台式机的CPU,但是随CPU主频的提高,笔记本电脑狭窄的空间不能迅速散发CPU产生的热量,还有笔记本电脑的电池也无法负担台式CPU庞大的耗电量,所以开始出现专门为笔记本设计的MobileCPU,它的制造工艺往往比同时代的台式机CPU更加先进,因为MobileCPU中会集成台式机CPU中不具备的电源管理技术,而且会先采用更高的微米精度。主要CPU型号:英特尔移动CPU,AMD移动CPU,全美达移动CPU.CPU核心核心(Die)又称为内核,是CPU最重要的组成部分。CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的。每•种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um以及0.09um等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如Socket370,SocketA,Socket478,SocketT,Slot1、Socket940等等)、前端总线频率(FSB)等等。因此,核心类型在某种程度上决定了CPU的工作性能。一般说来,新的核心类型往往比老的核心类型具有更好的性能(例如同频的Northwood核心Pentium41.8AGHz就要比Willamette核心的Pentium41.8GHz性能要高),但这也不是绝对的,这种情况一般发生在新核心类型刚推出时,由于技术不完善或新的架构和制造工艺不成熟等原因,可能会导致新的核心类型的性能反而还不如老的核心类型的性能。例如,早期Willamette核心Socket423接口的Pentium4的实际性能不如Socket370接口的Tualatin核心的PentiumIII和赛扬,现在的低频Prescott核心Pentium4的实际性能不如同频的Northwood核心Pentium4等等,但随着技术的进步以及CPU制造商对新核心的不断改进和完善,新核心的中后期产品的性能必然会超越老核心产品。CPU核心的发展方向是更低的电压、更低的功耗、更先进的制造工艺、集成更多的晶体管、更小的核心面积(这会降低CPU的生产成本从而最终会降低CPU的销售价格)、更先进的流水线架构和更多的指令集、更高的前端总线频率、集成更多的功能(例如集成内存控制器等等)以及双核心和多核心(也就是1个CPU内部有2个或更多个核心)等。CPU核心的进步对普通消费者而言,最有意义的就是能以更低的价格买到性能更强的CPUo.处理器主频主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的工作频率(主频)包括两部分:外频与倍频,两者的乘积就是主频。倍频的全称为倍频系数。CPU的主频与外频之间存在着一个比值关系,这个比值就是倍频系数,简称倍频。倍频可以从1.5一直到23以至更高,以0.5为一个间隔单位。外频与倍频相乘就是主频,所以其中任何••项提高都可以使CPU的主频上升。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。因此主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。.处理器缓存缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。LICache(一级缓存)是CPU第一层高速缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般L1缓存的容量通常在32—256KB。L2Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在普通台式机CPU的L2缓存一般为128KB到2MB或者更高,笔记本、服务器和工作站上用CPU的L2高速缓存最高可达.主板芯片组芯片组(Chipset)是主板的核心组成部分,按照在主板上的排列位置的不同,通常分为北桥芯片和南桥芯片。北桥芯片提供对CPU的类型和主频、内存的类型和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持。南桥芯片则提供对KBC(键盘控制器)、RTC(实时时钟控制器)、USB(通用串行总线)、UltraDMA/33(66)EIDE数据传输方式和ACPI(高级能源管理)等的支持。其中北桥芯片起着主导性的作用,也称为主桥(HostBridge)o移动芯片组市场份额最大的依然是Intel,当然参与芯片组竞争的厂商也非常多。台湾芯片组三巨头矽统SIS、威盛VIA、扬智ALI、以及图形显示芯片霸主ATI、NVIDIA,它们之间的较量越来越激烈。针对迅驰平台,Intel推出了INTEL855系列芯片组,Intel855系列移动芯片组包括独立型的Intel855PM和整合图形显示芯片的Intel855GM。Intel855GM中整合了改进型的ExtremeGraphics2图形内核,内置显卡的INTEL855GM芯片组主要应用在初级迅驰笔记本产品中,而INTEL855PM芯片组主要匹配强劲的独立显卡和较高频率的迅驰处理器应用在中高端产品中。支持IntelPentium4-M和Celeron4-M的是Intel852和Intel845系列芯片组,在这些Intel产品当中,Intel852的性能非常的出色,也是目前许多的P4-M机型最主要采用的芯片组。匹配迅驰的芯片组除了INTEL,目前只有SiS推出了相应的芯片组,不久前在SiS发布了新款支持迅驰架构的笔记本专用的芯片组。SiS发布的芯片组分别是独立型芯片——SiS648MX以及整合芯片SiSM661MX,这些芯片组是专门为Intel移动Pentium-M处理器设计研究开发的。SiSM661MX芯片以及648MX芯片是第一款获得Intel授权的支持迅驰处理器的非Intel的芯片组产品。SiSM661Mx以及SiS648Mx芯片组无论从功能上还是技术上来说,都相当出色,可以同Intel的855PM以及855GM芯片组媲美。相信SIS的支持迅驰技术的芯片组产品•定可以在市场上掀起波澜。2003年第三季度SIS发布了SIS661FX的笔记本用芯片组,该芯片组种能够支持800MHzFSB的各类Pentium4处理器。661FX同时集成UltraAGP图形芯片,支持DDR400最大分辨率可以达到1600X1200。由于授权政策开始松动,PentiumM配套芯片组将越来越丰富。接下来威盛VIA也获得Intel的授权,并且VIA已抢先-步发布两款支持PentiumM处理器平台的芯片组产品PN800和PN880,分别应对笔记本入门级市场和高端产品。更强的是这两款产品竟然还完全支持IntelCeleronM和IntelMobilePentium4处理器,对于400、533和800MHz处理器前端总线都给以支持。另外从来都是双管齐下的威盛VIA在AMDAthlon6464位的移动处理器的支持上也是不遗余力,威盛的K8T400M芯片组已经为移动Athlon64做好了准备。ATI、NVIDIA这对显示芯片巨头现在也略有涉及芯片组领域,例如我们以前熟悉的ATI推出的面向Athlon4和Duron版移动处理器的RADEONIGP320M和面向Pentium4-M的RADEONIGP340M芯片组。NVIDIA公司也推出了相应支持AMDAthlon64处理器的笔记本电脑芯片组,随着ATI和NVIDIA对AMD芯片组市场的介入,AMD移动处理器配套平台得到了很大的加强。ALi也是移动芯片组大军中的一员,其产品非常有特点,具有一定的厂商针对性,不过市场占有率不是很高。中高档笔记本一般使用INTEL主板芯片组,这是由于INTEL移动芯片组产品具有很高的稳定性和低能耗性的特点。但是由于移动INTEL主板芯片组价格昂贵,直接导致笔记本的价格也会较高。所以一些中低端的笔记本电脑采用了台湾矽统科技的芯片组。矽统尤其善于高集成芯片的研发,由于中低端笔记本电脑大都具有高集成的特点。所以矽统芯片组产品在其中应用的也非常广泛并且质量稳定业界口碑很好。尽管VIA同是台湾三大主板芯片组厂商。但是VIA的重点一直是在台式机主板芯片组领域,在笔记本主板专用芯片上略逊•筹。.前端总线频率总线是将信息以一个或多个源部件传送到•个或多个目的部件的一组传输线。通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是FrontSideBus,通常用FSB表示,是将CPU连接到北桥芯片的总线。计算机的前端总线频率是由CPU和北桥芯片共同决定的。北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率X数据位宽)+8。目前PC机上所能达到的前端总线频率有266MHz、333MHz>400MHz、533MHz、800MHz儿种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。外频与前端总线频率的区别:前端总线的速度指的是CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PCI及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium4出现之前和刚出现Pentium4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(QuadDateRate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。.内存类型由于笔记本电脑整合性高,设计精密,对于内存的要求比较高,笔记本内存必须符合小巧的特点,需采用优质的元件和先进的工艺,拥有体积小、容量大、速度快、耗电低、散热好等特性。出于追求体积小巧的考虑,大部分笔记本电脑最多只有两个内存插槽。对于一般的文字处理、上网办公的需求,安装Windows98的操作系统,使用128MB内存就可以满足需要了,如果安装的是Windows2000的操作系统,那么最好128MB+64MB拥有总计192MB以上的内存,如果运行的是WindowsXP,那么256MB内存是必须的。由于笔记本的内存扩展槽很有限,因此单位容量大一些的内存会显得比较重要。而且这样做还有一点好处,就是单位容量大的内存在保证相同容量的时候,会有更小的发热量,这对笔记本的稳定也是大有好处的。笔记本的内存大体可以分为EDO、SDRAM,DDR三种。儿大知名内存厂家及代号:现代电子(Hynix):HY,三星(SAMSUNG):KM或M,NBM:AAA,西门子(SIEMENS):HYB,高士达LG-SEMICON:GM,三菱(MITSUBISHI):M5M,富士通(FUJITSU):MB,摩托罗拉(MOTOROLA):MCM,MATSUHITA:MN,OKI:MSM,美凯龙(MICRON):MT,德州仪器(TMS):TI,东芝(TOSHIBA):TD或TC,日立(HITACHI):HM,STI:TM,日电(NEC):UPD,IBM:BM,NPNX:NN.EDO内存:这种内存主要用于古老的MMX和486机型上面,也有部分厂家在PH的笔记本电脑中仍然使用EDO内存,这种EDO单条最高容量只有64M,而且由于EDO内存的工作电压为5V和现在常用的SDRAM的3.3V相比更费电一些,所以很快就被SDRAM内存所取代。SDRAM内存:笔记本经历了Pentium时代,CPU的速度已经越来越快,这时Intel公司提出了具有里程碑意义的内存技术 SDRAMoSDRAM的全称是SynchronousDynamicRandomAccessMemory(同步动态随机存储器),就象它的名字所表明的那样,这种RAM可以使所有的输入输出信号保持与系统时钟同步。由于SDRAM的带宽为64Bit,因此它只需要一条内存就可以工作,数据传输速度比EDO内存至少快了25%。SDRAM包括PC66、PC100,PC133等儿种规格。DDR内存:顾名思义:DoubleDataRate(双倍数据传输)的SDRAM。随着台式机DDR内存的推出,现在笔记本电脑也步入了DDR时代,目前有DDR266和DDR333等规格,现在在主流的采用Pentium4-M、Pentium-M、P4核心赛扬的机器都是采用DDR内存,也有少量的Pentium3-M的机器早早跨入DDR时代。其实DDR的原理并不复杂,它让原来一个脉冲读取一次资料的SDRAM可以在一个脉冲之内读取两次资料,也就是脉冲的上升缘和下降缘通道都利用上,因此DDR本质上也就是SDRAMo而且相对于EDO和SDRAM,DDR内存更加省电(工作电压仅为2.25V)、单条容量更加大(已经可以达到1GB)。DDR2(DoubleDataRate2)SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上••代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。DDR2与DDR的区别:1、延迟问题:从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHzo这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。2、封装和发热量:DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。DDR内存通常采用TS0P芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同于目前广泛应用的TS0P封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。DDR2采用的新技术:除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、0DT和PostCASoOCD(Off-ChipDriver):也就是所谓的离线驱动调整,DDRII通过OCD可以提高信号的完整性。DDRII通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。ODT:ODT是内建核心的终结电阻器。我们知道使用DDRSDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自己的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。PostCAS:它是为了提高DDRII内存的利用效率而设定的。在PostCAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(AdditiveLatency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(AdditiveLatency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决。.标准内存容量是指该机器所标配内存的多少,一般笔记本标配内存容量从128M-512M不等,也有特殊用途的机器配有1G以上的内存。内存的种类和运行频率会对性能有一定影响,不过相比之下,容量的影响更加大。在其他配置相同的条件下内存越大机器性能也就越高,对于普通家用和日常办公,目前主流配置为256M,对于大型图片和数据处理,一般建议配置最好能在512M以上。.最大支持内存是指该款笔记本最大可以支持的内存容量大小,这跟主板的型号和芯片组有密切的关系。还应该注意•般笔记本只有两根内存插槽,随机已经占用一个插槽。如果以后需要升级内存,建议选择最大支持内存容量较高的笔记本。1L笔记本硬盘尺寸:笔记本电脑所使用的硬盘一般是2.5英寸,而台式机为3.5英寸,由于两者的制作工艺技术参数不同,首先,2.5硬盘只是使用一个或两个磁盘进行工作,而3.5的硬盘最多可以装配五个进行工作;另外,由于3.5硬盘的磁盘直径较大,则可以相对提供较大的存储容量;如果只是进行区域密度存储容量比较的话,2.5硬盘的表现也相当令人满意。笔记本电脑硬盘是笔记本电脑中为数不多的通用部件之一,基本上所有笔记本电脑硬盘都是可以通用的。厚度:但是笔记本电脑硬盘有个台式机硬盘没有的参数,就是厚度,标准的笔记本电脑硬盘有9.5,12.5,17.5mm三种厚度。9.5mm的硬盘是为超轻超薄机型设计的,12.5mm的硬盘主要用于厚度较大光软互换和全内置机型,至于17.5mm的硬盘是以前单碟容量较小时的产物,现在已经基本没有机型采用了。转数:笔记本电脑硬盘现在最快的是5400转2MCache,支持DMA100(主流型号只有4200转512KCache,支持DMA66),但其速度和现在台式机最慢的5400转512KCache硬盘比较起来也相差甚远,由于笔记本电脑硬盘采用的是2.5英寸盘片,即使转速相同时,外圈的线速度也无法和3.5英寸盘片的台式机硬盘相比,笔记本电脑硬盘现在已经是笔记本电脑性能提高最大的瓶颈。接口类型:笔记本电脑硬盘••般采用3种形式和主板相连:用硬盘针脚直接和主板上的插座连接,用特殊的硬盘线和主板相连,或者采用转接口和主板上的插座连接。不管采用哪种方式,效果都是一样的,只是取决于厂家的设计。早期的笔记本的接口采用的主要是UltraATA/DMA33,然而笔记本硬盘转速以及容量的提高使得它成为一个阻碍本本电脑速度的瓶颈。为此正如台式机的发展趋势,UltraATA/DMA66/100/133也被运用到了笔记本硬盘上。目前使用的是UltraATAlOO,E-IDE接口的产品在提供了高达100MB/s最大传输率的同时还将CPU从数据流中解放了出来。现在SATA串口技术已在广泛使用在了台式机的硬盘中,目前在笔记本硬盘中也开始广泛应用SerialATA接口技术,采用该接口仅以四只针脚便能完成所有工作。该技术重要之处在于可使接口驱动电路体积变得更加简洁,高达150Mb/s的传输速度使厂商能更容易地制造出对处理器依赖性更小的微型高速笔记本硬盘。容量及采用技术:由于应用程序越来越庞大,硬盘容量也有愈来愈高的趋势,对于笔记本电脑的硬盘来说,不但要求其容量大,还要求其体积小。为解决这个矛盾,笔记本电脑的硬盘普遍采用了磁阻磁头(MR)技术或扩展磁阻磁头(MRX)技术,MR磁头以极高的密度记录数据,从而增加了磁盘容量、提高数据吞吐率,同时还能减少磁头数目和磁盘空间,提高磁盘的可靠性和抗干扰、震动性能。它还采用了诸如增强型自适应电池寿命扩展器、PRML数字通道、新型平滑磁头加载/卸载等高新技术。.光驱类型光驱是笔记本里比较常见的一个配件。随着多媒体的应用越来越广泛,使得光驱在笔记本诸多配件中的已经成标准配置。目前,光驱可分为CD-ROM驱动器、DVD光驱(DVD-ROM)、康宝(COMBO)和刻录机等。CD-ROM光驱:又称为致密盘只读存储器,是一种只读的光存储介质。它是利用原本用于音频CD的CD-DA(DigitalAudio)格式发展起来的。DVD光驱:是一种可以读取DVD碟片的光驱,除了兼容DVD-ROM,DVD-VIDEO,DVD-R,CD-ROM等常见的格式外,对于CD-R/RW,CD-I,VIDEO-CD,CD-G等都要能很好的支持。COMBO光驱:“康宝”光驱是人们对COMBO光驱的俗称。而COMBO光驱是一种集合了CD刻录、CD-ROM和DVD-ROM为一体的多功能光存储产品。刻录光驱:包括了CD-R、CD-RW和DVD刻录机等,其中DVD刻录机又分DVD+R、DVD-R、DVD+RW、DVD-RW(W代表可反复擦写)和DVD-RAM。刻录机的外观和普通光驱差不多,只是其前置面板上通常都清楚地标识着写入、复写和读取三种速度。对于全内置笔记本电脑来说,由于光驱不需要与软驱进行交换,它们的光驱和软驱都为内置结构,不能随意取下来。对于超轻超薄笔记本电脑来说,光驱和软驱可以内置,也可以插在一个专用的外置盒中,通过特殊的模块扩展接口连接到笔记本电脑之上。为了减小体积,笔记本电脑使用的光驱的激光头与托盘是结合在一起的,托盘弹出时,激光头也会跟随一起弹出。.光驱倍速CD刻录速度:CD刻录速度是指该光储产品所支持的最大的CD-R刻录倍速。目前市场主流内置式CD-RW产品最大能达到的是52倍速的刻录速度,还有部分40倍速、48倍速的产品,在实际工作中受主机性能等因素的影响,三者刻录速度上的差异并不悬殊。52倍速这基本已经接近CD-RW刻录机的极限,很难再有所提升。外置式的CD-RW刻录机市场上的产品速度差异较大,有8倍速、24倍速、40倍速、48倍速和52倍速等,•般外形尺寸小巧,着重强调便携性的产品刻录速度一般是较低的水平。而体积相对较为笨重的外置式CD-RW刻录机基本都保持较高的刻录速度,甚至与内置式持平。DVD刻录速度:目前市场中的DVD刻录机能达到的最高刻录速度为8倍速,较多的产品还只能达到2〜4倍速的刻录速度,每秒数据传输量为2.76M-5.52MB,刻录一张4.7GB的DVD盘片需要大约15-27分钟的时间;而采用8倍速刻录则只需要7到8分钟,只比刻录一张CD-R的速度慢一点,但考虑到其刻录的数据量,8倍速的刻录速度已达到了很高的程度。DVD刻录速度是购买DVD刻录机的首要因素,如果在资金充足的情况下,尽可能选择高倍速的DVD刻录机。CD读取速度:最大CD读取速度是指光存储产品在读取CD-ROM光盘时,所能达到最大光驱倍速。因为是针对CD-ROM光盘,因此该速度是以CD-ROM倍速来标称,不是采用DVD-ROM的倍速标称。目前CD-ROM所能达到的最大CD读取速度是56倍速;DVD-ROM读取CD-ROM速度方面要略低一点,达到52倍速的产品还比较少,大部分为48倍速;COMBO产品基本都达到了52倍速。对于50倍速的CD-ROM驱动器理论上的数据传输率应为:150X50=7500K字节/秒。其实光驱读盘的速度快慢差别并非十分重要。这是因目前不再是计算机系统中拖后腿的部件。而且,目前高倍速光驱的标称值只是在理想情况下读外圈的最高速度,实际应用中一般也就是24速的样子。因此不管是36速、40速还是50速的光驱,实际使用起来主观感觉差别不是很大。DVD读取速度:最大DVD读取速度是指光存储产品在读取DVD-ROM光盘时,所能达到最大光驱倍速。该速度是以DVD-ROM倍速来定义的。目前DVD-ROM驱动器的所能达到的最大DVD读取速度是16倍速;DVD刻录机所能达到的最大DVD读取速度是12倍速,相信16倍速的产品也不久就会推出;目前商场COMBO中产品所支持的最大DVD读取速度主要有8倍速和16倍速两种。CD复写速度:CD复写速度是指刻录机在刻录CD-RW光盘,在光盘上存储有数据时,对其进行数据擦除并刻录新数据的最大刻录速度。较快CD-RW刻录机在对CD-RW光盘复写操作时可以达到32倍速,虽然DVD刻录机也支持对CD-RW光盘的可写,但一般CD复写速度要略低于CD-RW刻录机,只有个别的产品才能达到32倍速的复写速度。COMBO产品在CD-RW复写方面表现也不错,现在市面上的产品基本都能达到24倍速的水平,部分产品也到到了32倍速。DVD复写速度:DVD复写速度是指DVD刻录机在刻录相应规格的DVD刻录光盘,在光盘上存储有数据时,对其进行数据擦除并刻录新数据的最大刻录速度。目前各种制式的DVD刻录机中最大能达到的最大DVD复写速度为4倍速,也就是每秒约5.4MB/s的速度。.软驱世界上第一个5.25英寸的软驱,是1976年的时候由ShugartAssociates公司为IBM的大型机研发的。后来才用在IBM早期的PC中。1980年,索尼公司推出了3.5英寸的磁盘。到90年代初时到现在,3.5英寸、1.44乂8的软盘一直用于PC的标准的数据传输方式。早期的计算机一般使用5.25英寸软驱,5.25英寸软驱主要有两种。一种为5.25英寸双面高密软驱(也叫5.25寸1.2M软驱),可读写5.25英寸双面高密软盘(1.2M)、5.25英寸双面低密软盘(360K)>5.25英寸单面低密软盘(180K)。另一种为双面低密软驱,与前者的主要区别是不能读写5.25英寸双面高密软盘(1.2M)o后来生产出3.5英寸双面高密软驱(也叫3.5寸1.44乂软驱),可读写3.5英寸双面屏幕尺寸是指笔记本屏幕对角线的尺寸,一般用英寸来表示。由于笔记本电脑采用的液晶屏的大小和分辩率是根据它的市场定位决定的,所以为了适应不同人群的消费能力和使用习惯,笔记本电脑的液晶显示器的尺寸和分辨率种类远远要比台式液晶显示器多。笔记本电脑采用的液晶屏的尺寸是要根据该款机器的市场定位来确定的,屏幕的尺寸可以从一定程度上决定了它的重量。对于那些追求移动性的超轻薄机型,大都采用的是12.1英寸以下的液晶屏,这部分屏幕尺寸包括:6.4英寸、8.9英寸、11.3英寸、10.4英寸、10.6英寸、12.1英寸、13.3英寸;而14.1英寸和15英寸则是一些同时注重性能与便携性的机型最常见的屏幕尺寸,现在的主流内置光驱或光软互换都是采用14.1英寸的屏幕;定位为台式机替代品的大型笔记本电脑最常用的屏幕尺寸是15、16.1英寸,甚至有些机器采用了17英寸的屏幕。高密软盘(1.44M)和3.5英寸单面高密软盘(720K)。在很长一段时间里,计算机•般带有两个软驱,分别为5.25寸1.2M软驱和3.5寸1.44M软驱,而现在一般只配3.5寸1.44M软驱。普通软驱的特点是容量小,单位容量成本高;软盘容易出错,可靠性差:速度慢。笔记本一般都采用内置3.55”1.44MB的软驱或外置的软驱。.显示屏类型笔记本屏幕:自从1985年世界第一台笔记本电脑诞生以来,LCD液晶显示屏就•直是笔记本电脑的标准显示设备。在笔记本电脑中,主要先后采用了无源矩阵显示器中的双扫描无源阵列彩显DSTN—LCD(俗称伪彩显)和有源矩阵显示器中的薄膜晶体管有源阵列彩显TFT—LCD(俗称真彩显)两种LCD。DSTN(Dual-LayerSuperTwistNematic):是指双扫描扭曲向列,意即通过双扫描方式来扫描扭曲向列型液晶显示屏,达到完成显示的目的。DSTN-LCD并非真正的彩色显示器,它只能显示一定的颜色深度,与CRT的颜色显示特性相距较远,因而叫"伪彩显"。由于DSTN-LCD的对比度和亮度较差,屏幕观察范围较小,色彩不丰富,特别是反应速度慢,不适于高速全动图像、视频播放等应用,一般只用于文字、表格和静态图像处理,现在已基本绝迹。只有在部分二手笔记本上可以看到。TFT(ThinFilmTransistor)LCD:是由薄膜晶体管组成的屏幕,它的每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,显示屏上每个像素点后面都有四个(一个黑色、三个RGB彩色)相互独立的薄膜晶体管驱动像素点发出彩色光,可显示24位色深的真彩色,可以做到高速度、高亮度、高对比度显示屏幕信息。TFT-LCD是目前最好的LCD彩色显示设备之一,其效果接近CRT显示器,是现在笔记本电脑和台式机上的主流显示设备。.标准分辨率笔记本屏幕的标准分辨率就是指所采用TFT-LCD的物理像素,它要与显卡输出的逻辑点相对应,所以LCD屏幕往往只有一个最佳显示分辨率。而这一最佳分辨率-•般来说也就是该LCD面板的最大分辨率。例如分辨率为1024X768时,就是指在LCD屏幕的横向上划分了1024个像素点,竖向上划分了768个像素点。介于体积以及重量方面的原因,笔记本所采用了LCD屏幕不像普通台式机那样可以无限制的扩大,•般也就在12、14、15英寸左右变动,除了特殊需要很少有笔记本能配备15英寸以上的LCD。为了能使用户在有限的空间里能看到更多的内容LCD生产商采用了提高显示分辨率的做法。通过增加相同尺寸LCD中可供显示的像素来扩大显示面积。这也就是为什么我们能在采用相同大小屏幕尺寸的笔记本中看到XGA、SXGA以及UXGA等参数的原因。下面具体介绍一下XGA、SXGA以及UXGA等参数的含义:VGA:全称是VideoGraphicsArray,这种屏幕现在基本已经绝迹了,支持最大分辨率为640X480,但现在仍有一些小的便携设备还在使用这种屏幕。SVGA:全称SuperVideoGraphicsArray,属于VGA屏幕的替代品,最大支持800X600分辨率,屏幕大小为12.1英寸,由于像素较低所以目前采用这一屏幕的笔记本也很少了。XGA:全称ExtendedGraphicsArray,这是--种目前笔记本普遍采用的一种LCD屏幕,市面上将近有80%的笔记本采用了这种产品。它支持最大1024X768分辨率,屏幕大小从10.4英寸、12.1英寸、13.3英寸到14.1英寸、15.1英寸都有。SXGA+:全称SuperExtendedGraphicsArray,作为SXGA的一种扩展SXGA+是一种专门为笔记本设计的屏幕。其显示分辨率为1400X1050。由于笔记本LCD屏幕的水平与垂直点距不同于普通桌面LCD,所以其显示的精度要比普通17英寸的桌面LCD高出不少。UVGA:全称UltraVideoGraphicsArray,这种屏幕应用在15英寸的屏幕的本本上,支持最大1600X1200分辨率。由于对制造工艺要求较高所以价格也是比较昂贵。目前只有少部分高端的移动工作站配备了这一类型的屏幕。.屏幕比例是指屏幕画面纵向和横向的比例,屏幕宽高比可以用两个整数的比来表示,也可以用一个小数来表示,如4:3或1.33。普通电脑显示器及数据信号和普通电视信号的宽高比为是4:3或1.33,电影及DVD和高清晰度电视的宽高比是16:9或L78。当输入源图像的宽高比与显示设备支持的宽高比不一样时,就会有画面变形和缺失的情况出现。16:9的图像在4:3屏幕上显示时有3种方式:第一种是变形(Anemographic)方式,在水平充满的情况下,垂直拉长,直到充满屏幕,这样图像看起来比原来瘦;第二种方式是字符框-A(Letterbox-A)方式,16:9的图像保持其不失真,但在屏幕上下各留下一条黑条;第三种方式是-B(Letterbox-B)方式,是前两种方式的折中,水平方向两侧各超出屏幕一部分,垂直上下黑条也比第二种窄一些,图像的宽高比为14:9O目前的家用笔记本为了迎合家庭娱乐的需求,通常屏幕宽高比为16:9或16:10。宽屏能在带来更大显示面积的同时,不显著加大机身和屏幕的面积,由此减轻整机的重量,另外同样对角线长度的宽屏,其面积比起普通4:3屏幕要更小些,可以减低生产成本,由于灯管较长而屏幕的相对面积较小,宽屏的亮度和对比度在平均水准上要普通4:3比例普通屏幕优胜。.显示芯片显示芯片是显卡的核心芯片,它的性能好坏直接决定了显卡性能的好坏,它的主要任务就是处理系统输入的视频信息并将其进行构建、渲染等工作。显示主芯片的性能直接决定了显示卡性能的高低。不同的显示芯片,不论从内部结构还是其性能,都存在着差异,而其价格差别也很大。显示芯片在显卡中的地位,就相当于电脑中CPU的地位,是整个显卡的核心。因为显示芯片的复杂性,目前设计、制造显示芯片的厂家只有NVIDIA、ATI、SIS、3DLabs等公司。家用娱乐性显卡都采用单芯片设计的显示芯片,而在部分专业的工作站显卡上有采用多个显示芯片组合的方式。.显存容量显卡本身拥有存储图形、图像数据的存储器,这样,计算机内存就不必存储相关的图形数据,因此可以节约大量的空间。显存均以标准的大小提供:16MB、32MB、64MB和128MB。显存的大小决定了显示器分辨率的大小及显示器上能够显示的颜色数。一般地说,显存越大,渲染及2D和3D图形的显示性能就越高。显存有SDR(单倍数据率)或DDR(双倍数据率)两种形式。DDR显存的带宽是SDR显存带宽的两倍。在显卡的描述中,显存的大小列于首位。.显卡类型目前笔记本显卡主要有独立与集成两种:ATI系列:ATI•直是笔记本电脑显示芯片的霸主,大多数笔记本电脑均采用ATIMobilityRadeon系列显卡。此产品与nVIDIA的GeforceGO系列在设计出发点上有所不同,主要针对笔记本电脑的特点,在不提高功耗的前提下优化3D性能。虽然ATIMobilityRadeon不支持硬件T&L,在3D性能上要略逊于GeforceGO系列,但它的功耗只有2.2W,并且带有类似Intel笔记本专用CPU的SpeedStep节能技术,这种技术可以根据用电情况选择核心频率和电压。由于以前笔记本主要应用于商业领域,至于笔记本显卡在娱乐,特别是3D游戏方面的欠佳表现,并没有引起人们的太多注意。人们更关心它的功耗和2D性能,似乎笔记本电脑天生就与3D游戏无缘。随着笔记本电脑的功能不断强大,以及应用领域的扩大,家庭用户成为了笔记本电脑的庞大消费群体,这样一来,提高笔记本显卡3D性能也成为迫在眉睫的问题。最新推出的ATIMobilityRadeonGraphics已经可以达到主流的台式机显卡的水平。MobileRadeon拥有台式机专用Radeon绝大多数的特性,并且在主板上集成了64MDDR显存。完善的2D效果和超强3D水平试得它已经成为高端笔记本的首选显卡。nVIDIA系列:作为显卡芯片王者的nVIDIA顺应潮流,推出了多面手型的GeforceGO系列显示芯片,这也是nVIDIA推出的移动显示芯片。众所周知nVIDA在台式机显卡中以优越的3D效果已经是广大用户的首选。GeforceGO系列的架构与Geforce系列相同,只是在MX的基础上降低了频率和功耗,GeforceGO系列的核心频率和显存频率虽然Geforce系列比要低一些,但远远超出了ATIMobilityRadeono打破了笔记本不适合玩游戏的说法。而GeforceGO搭配的显存有SDRAM和DDR两种,最多支持64/128位64M显存,最大带宽2.6GB/S。将DDR技术应用在笔记本电脑的显卡中,可以算是一种飞跃了。GeforceGO系列还支持硬件的T&L,使3D游戏表现得更加精彩。但是GeforceGO系列的功耗十分惊人,2.8W算是目前笔记本显卡芯片的最高记录。而且GeforceGO不支持内嵌式的显存,只能使用外部显存,整个显示系统占用的空间就会偏大。一般超轻薄的笔记本无法采用该系列显卡。集成芯片:目前使用Intel、SIS和ALI的主板的笔记本有部分是集成类显卡。这种集成显卡可以充分的缩小空间和降低笔记本的成本。其性能也完全能胜任••般商业用户,不过要是运行较大型的3D游戏当然会非常的吃力。.AGP插槽标准AGP是AcceleratedGraphicsPort(图形加速端口)的缩写,是显示卡的专用扩展插槽,它是在PCI图形接口的基础上发展而来的。AGP规范是英特尔公司解决电脑处理(主要是显示)3D图形能力差的问题而出台的。AGP并不是一种总线,而是一种接口方式。随着3D游戏做得越来越复杂,使用了大量的3D特效和纹理,使原来传输速率为133MB/sec的PCI总线越来越不堪重负,籍此原因Intel才推出了拥有高带宽的AGP接口。这是一种与PCI总线迥然不同的图形接口,它完全独立于PCI总线之外,直接把显卡与主板控制芯片联在一起,使得3D图形数据省略了越过PCI总线的过程,从而很好地解决了低带宽PCI接口造成的系统瓶颈问题。可以说,AGP代替PCI成为新的图形端口是技术发展的必然。AGP标准分为AGP1.0(AGPIX和AGP2X),AGP2.0(AGP4X),AGP3.0(AGP8X)。1996年7月AGP1.0图形标准问世,分为IX和2X两种模式,数据传输带宽分别达到了266MB/S和533MB/so这种图形接口规范是在66MHzPCI2.1规范基础上经过扩充和加强而形成的,其工作频率为66MHz,工作电压为3.3v,在一段时间内基本满足了显示设备与系统交换数据的需要。这种规范中的AGP带宽很小,现在已经被淘汰了。近几年显示芯片的发展实在是太快了,图形卡单位时间内所能处理的数据呈儿何级数成倍增长,AGP1.0图形标准越来越难以满足技术的进步了,由此AGP2.0便应运而生了。1998年5月份,AGP2.0规范正式发布,工作频率依然是66MHz,但工作电压降低到了1.5v,并且增加了4x模式,这样它的数据传输带宽达到了1066MB/sec,数据传输能力大大地增强了。AGPPro接口与AGP2.0同时推出,这是•种为了满足显示设备功耗日益加大的现实而研发的图形接口标准,应用该技术的图形接口主要的特点是比AGP4x略长一些,其加长部分可容纳更多的电源引脚,使得这种接口可以驱动功耗更大(25-llOw)或者处理能力更强大的AGP显卡。这种标准其实是专为高端图形工作站而设计的,完全兼容AGP4x规范,使得AGP4x的显卡也可以插在这种插槽中正常使用。AGPPro在原有AGP插槽的两侧进行延伸,提供额外的电能。它是用来增强,而不是取代现有AGP插槽的功能。根据所能提供能量的不同,可以把AGPPro细分为AGPProllO和AGPPro50o2000年8月,Intel推出AGP3.0规范,工作电压降到0.8V,并增加了8X模式,这样它的数据传输带宽达到了2133MB/sec,数据传输能力相对于AGP4X成倍增长,能较好的满足当前显示设备的带宽需求。.声卡和音箱笔记本声卡:笔记本电脑上的任何配件都要受到体积和功耗两方面的限制,作为目前电脑的标准配件之一的声卡也不能脱离这个规则的,为有效降低整机的体积和功耗,几乎所有笔记本电脑上声卡均采用的是板载软声卡。软声卡与硬件声卡最大的区别就在于缺少数字音频处理单元,数字音频解码工作都完全依靠CPU用类似软件运算一样的方式完成。所以使用软声卡在CPU占用率方面的明显要比独立的硬件声卡占用率高,随着CPU主频的不断攀升,现在P4-M以上级别的机器中软声卡造成的CPU负担已经不是什么非常重要的问题了,由于声卡的集成有效地减少了主板的面积,为笔记本电脑设计的更加小巧轻薄创造了条件由于将硬件集成在芯片组内可以采用更少的电路,减少信号传导时的功率损失,所以采用集成声卡要比采用独立声卡更加的省电。笔记本音箱:是一台笔记本的发声单元,一般笔记本中所配备的只是简单的单声道音箱,位于笔记本电脑的腕托的右下角,由于喇叭的方向朝下,所以声波会通过桌面反弹才能达到人耳,声音听起来非常小且发闷。Toshiba笔记本是少量采用高品质音箱的厂商之一,它的声卡采用日本著名厂商YAMAHA的声卡,效果上绝对堪称一■流。底部采用的Harman/Kardon的低音炮也功不可末,尤其值得称道的是Toshiba音箱的设计位置,它采用立式音箱,巧妙的把音箱安放在笔记本的屏幕转轴两侧,采用金属振膜中高音扬声器,机器底部安装纸盆低音扬声器。把音箱设计在屏幕转轴附近的好处是即使是关闭屏幕播放音乐也不会出现音质下降的现象,在任何时候都可以获得良好的散射角度,可以在最大限度上发挥出它的效果。还有HP笔记本上采用老牌音响厂商美国JBL公司喇叭单元了,设计上采用采用不透气的铝箔和胶水结合机壳来形成密封的音箱,并且采用了很薄的扬声器单元,音响效果甚佳。.调制解调器是为数据通信的数字信号在具有有限带宽的模拟信道上进行远距离传输而设计的,它一般由基带处理、调制解调、信号放大和滤波、均衡等儿部分组成。调制是将数字信号与音频载波组合,产生适合于电话线上传输的音频信号(模拟信号),解调是从音频信号中恢复出数字信号。调制解调器一般分为外置式、内置式和PC卡式三种。可通过电话线或专用网缆,外置调制解调器与计算机串行接口;内置式调制解调器直接插在计算机扩展槽中;PC卡式是笔记本计算机采用,直接插在标准的PCMCIA插槽中。调制解调器的性能及速率直接关系到联网以后传输信息的速度,调制解调器的速率有14.4K、19.2K、28.8K、33.6K和56K等,目前56K使用较为普遍。CCITT建议调制解调器的V.34标准,其最大的特点是"自适应速率传输”,即在传输过程中,根据当地用户线路的质量好坏,产品有自动调节传输速率的功能,这样能使所在地区线路不佳的联网用户也可以享受到高速传输的连接效果。而V.37标准具有9600128000bps信号速率、四线全双工通信方式、同步、单边带调制方式和60~108kHz基群电路等功能;v.42标准具有56000bps信号速率、全双工通信方式、同步和拥有数据压缩及差错控制技术等功能。.网卡笔记本一般都采用内置网卡来连接网络。网卡也叫“网络适配器”,英文全称为"NetworkInterfaceCard",简称"NIC",网卡是局域网中最基本的部件之一,它是连接计算机与网络的硬件设备。无论是双绞线连接、同轴电缆连接还是光纤连接,都必须借助于网卡才能实现数据的通信。网卡的主要工作原理是整理计算机上发往网线上的数据,并将数据分解为适当大小的数据包之后向网络上发送出去。对于网卡而言,每块网卡都有一个唯一的网络节点地址,它是网卡生产厂家在生产时烧入ROM(只读存储芯片)中的,我们把它叫做MAC地址(物理地址),且保证绝对不会重复。我们日常使用的网卡都是以太网网卡。目前网卡按其传输速度来分可分为10M网卡、10/100M自适应网卡以及千兆(1000M)网卡。如果只是作为一般用途,如日常办公等,比较适合使用10M网卡和10/100M自适应网卡两种。.指取设备由于受到体积上的限制,笔记本电脑的主要输入设备鼠标和键盘都与台式机有一些区别。目前笔记本电脑内置的常见鼠标设备(确切地说应是指点设备)有四种,它们分别是轨迹球、触摸屏、触摸板和指点杆,其外观都与标准鼠标大相径庭,但功能是一致的。轨迹球的特点是体积较大,比较重,容易磨损和进灰尘,且定位精度的能力一般,现在轨迹球已经被淘汰了。触摸屏使用起来最方便,但定位精度较差,制造成本也最高,目前多用于超便携笔记本电脑之中,在全内置和超轻超薄笔记本电脑上比较少见。触摸板是目前使用得最为广泛的笔记本电脑鼠标,Compaq、Dell等品牌的笔记本电脑均配有触摸板。触摸板由一块能够感应手指运行轨迹的压感板和两个按钮组成,两个按钮相当于标准鼠标的左右键。触摸板的是没有机械磨损,控制精度也不错,最重要的是,它操作起来很方便,初学者很容易上手,一些笔记本电脑甚至把触模板的功能扩展为手写板,可用于手写汉字输入。不过,缺点是使用者的手指潮湿或者脏污的话,控制起来就不那么顺手了。指点杆(TrackPoint)是由IBM发明的,目前常见于IBM和Toshiba的笔记本电脑中,它有--个小按钮位于键盘的G、B、H三键之间,在空白键下方还有两个大按钮,其中小按钮能够感应手指推力的大小和方向,并由此来控制鼠标的移动轨迹,而大按钮相当于标准鼠标的左右键。指点杆的特点是移动速度快,定位精确,但控制起来却有点困难,初学者不容易上手,但不少用户在掌握了指点杆的使用诀窍后,往往对它爱不释手。缺点是用久了按钮外套易磨损脱落,需要更换。.指纹识别现在的计算机应用中,包括许多非常机密的文件保护,大都使用“用户ID+密码”的方法来进行用户的身份认证和访问控制。但是,如果一旦密码忘记,或被别人窃取,计算机系统以及文件的安全问题就受到了威胁。随着科技的进步,指纹识别技术已经开始慢慢进入计算机世界中。目前许多公司和研究机构都在指纹识别技术领域取得了很大突破性进展,推出许多指纹识别与传统IT技术完美结合的应用产品,这些产品已经被越来越多的用户所认可。指纹识别技术多用于对安全性要求比较高的商务领域,而在商务移动办公领域颇具建树的富士通、三星及IBM等国际知名品牌都拥有技术与应用较为成熟的指纹识别系统,下面就对指纹识别系统在笔记本电脑中的应用进行简单介绍。众所周知,在两年前就有部分品牌的笔记本采用指纹识别技术用于用户登录时的身份鉴定,但是,当时推出的指纹系统属于光学识别系统,按照现在的说法,应该属于第一代指纹识别技术。光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做•个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。发展到今天,富士通和IBM等国际领先品牌的笔记本电脑开始采用第二代指纹识别系统,改变以前指纹识别容易出错和不稳定的缺点。新一代的指纹系统采用了电容传感器技术,并采用了小信号来创建山脉状指纹图像的半导体设备。指纹识别器的电容传感器发出电子信号,电子信号将穿过手指的表面和死性皮肤层,而达到手指皮肤的活体层(真皮层),直接读取指纹图案,从而大大提高了系统的安全性。.外部端口对于机器内部空间狭窄的笔记本电脑,在内部能够实现的扩充非常有限,加上各个笔记本电脑厂商•向惯于根据机器的不同情况采用自己专用的内部接口和部件,内部扩充部件的通用性进一步减低,因此外部端口在笔记本电脑中就具有比台式机更加重要的地位。这些接口包括并口,串口,PS2接口和红外线接口,特殊的软驱和扩展坞/端口复制器端口,还有VGA输出和PC卡插槽。.PC卡插槽PC卡插槽也是象VGA输出端口一样的笔记本电脑标准装备,PC卡属于工业标准(PCMCIA规范),在许多中型数码设备和工业控制设备上也广泛应用,但是日常最多见到的还是在笔记本电脑上。可以这样说,在USB和IEEE1394这样即插即用的端口出现之前,PC卡插槽是笔记本电脑上唯一真正支持即插即用的端口,而且因为PCMCIA规范获得广范的支持,市场上PC卡产品可谓多不胜数,为笔记本电脑提供了种类繁多的扩充选择。PC卡插槽相当于台式机的PCI插槽,不同之处在于PC卡插槽是即插即用的,允许在操作系统运行中停止PC卡设备,与PC卡插槽配合的扩展卡称为PC卡,按照外形来分有TypeI/11/III三种,3者的长宽度均为85.6X54mm,区别在于厚度,Typel是3.3mm,TypeII是5.Omm;TypeIII是10.5mm,它们的接口是完全相同的,都是68针,因此只要PC卡插槽的厚度允许,三种规格的卡都可以通用。之所以有厚度的区别是因为内置的设备要求不同,例如内存就可以置于最薄的TypeI卡中,但是微型硬盘就至少需要Typell或者TypeHI卡的厚度才能容纳得下。在笔记本电脑上使用的都是TypeII的插槽,两个TypeII的插槽叠加在一起就可以容纳TypeHI的卡,大多数主流光软互换机型和全内置机型装备2个TypeII插槽,大多数超轻薄机器都只装备一个TypeII插槽。.光软位置按照通用的架构分类,笔记本电脑有3中不同的架构,用专用术语Spindle区别,包括1—Spindle,2-Spindle,3-Spindled。(Spindle是指能够旋转的轴或锥,在笔记本电脑中,Spindle代表硬盘、软驱和光驱等)。l-Spindle指笔记本电脑机器内部只有••个Spindle,当然是硬盘了,否则不能开机工作了。那么要么软驱和光驱全外置或者没有配备光驱和软驱;2—Spindle是指机器内部除硬盘之外还有一个光驱或者是软驱,如果内置光驱,没有标配软驱或者软驱外置都属于此列;3—Spindle当然是指硬盘、光驱、软驱全部内置于机器内部了,就是我们常说的全内置机种了。不同架构的笔记本电脑重量和厚度有很大的差异,l-Spindle(全外置笔记本电脑)一般具备超轻超薄的特性,重量一般不超过L8公斤,厚度不超过2.5厘米,为了在有限空间内解决散热问题,其外壳一般采用铝镁合金材料,否则会影响性能质量;3-Spindle(al1-in-one,全内置)机种因为内置了光驱和软驱,体积和重量都是最大的,重量一般大于3公斤,厚度大约4厘米,电池容量大,一般用于固定办公需要;2—Spindle(没有内置软驱或者软驱外置,或者软驱与光驱互换)介于全外置和全内置之间,重量和尺寸适中,是目前最主流的笔记本电脑类型。.笔记本电池使用可充电电池是笔记本电脑相对台式机的优势之一,它可以极大地方便在各种环境下笔记本电脑的使用。最早推出的电池是银镉电池(NiCd),但这种电池具有“记忆效应”,每次充电前必须放电,使用起来很不方便,不久就被银氢电池(NiMH)所取代,NiMH不仅没有“记忆效应”,而且每单位重量可多提10%的电量。目前最常用的电池是锂离子电池(Li-Ion),它也没有“记忆效应”,与NiMH相比,每单位重量可获得更多的电量,价格也比NiMH高一倍。在同样重量下,这三种电池的使用时间比是1:1.2:1.9。.电源适配器电源适配器是小型便携式电子设备及电子电器的供电电源变换设备,一般由外壳、电源变压器和整流电路组成,按其输出类型可分为交流输出型和直流输出型;按连接方式可分为插墙式和桌面式。广泛配套于电话子母机、游戏机、语言复读机、随身听、笔记本计算机、蜂窝电话等设备中。多数笔记本电脑的电源适配器可以自动检测100〜240V交流电(50/60HZ)。基本上所有的笔记本电脑都把电源外置,用--条线和主机连接,这样可以缩小主机的体积和重量,只有极少数的机型把电源内置在主机内。在电源适配器上都有一个铭牌,上面标示着功率,输入输出电压和电流量等指标,特别耍注意输入电压的范围,这就是所谓的“旅行电源适配器”,如果到市电电压只有100V的国家时,这个特性就很有用了,有些水货笔记本电脑是只在原产地销售的,没有这种设计,甚至只有100V的单一输入电压,在我国的220V市电电压下插上就会烧毁。.机壳材料笔记本电脑的外壳既是保护机体的最直接的方式,也是影响其散热效果、“体重”、美观度的重要因。笔记本电脑常见的外壳用料有:合金外壳有铝镁合金与钛合金,塑料外壳有碳纤维、PC-GF-##(聚碳酸酯PC)和ABS工程塑料。铝镁合金:铝镁合金-一般主要元素是铝,再掺入少量的镁或是其它的金属材料来加强其硬度。因本身就是金属,其导热性能和强度尤为突出。铝镁合金质坚量轻、密度低、散热性较好、抗压性较强,能充分满足3c产品高度集成化、轻薄化、微型化、抗摔撞及电磁屏蔽和散热的要求。其硬度是传统塑料机壳的数倍,但重量仅为后者的三分之一,通常被用于中高档超薄型或尺寸较小的笔记本的外壳。而且,银白色的镁铝合金外壳可使产品更豪华、美观,而且易于上色,可以通过表面处理工艺变成个性化的粉蓝色和粉红色,为笔记本电脑增色不少,这是工程塑料以及碳纤维所无法比拟的。因而铝镁合金成了便携型笔记本电脑的首选外壳材料,目前大部分厂商的笔记本电脑产品均采用了铝镁合金外壳技术。缺点:镁铝合金并不是很坚固耐磨,成本较高,比较昂贵,而且成型比ABS困难(需要用冲压或者压铸工艺),所以笔记本电脑一般只把铝镁合金使用在顶盖上,很少有机型用铝镁合金来制造整个机壳。钛合金:钛合金材质的可以说是铝镁合金的加强版,钛合金与镁合金除了掺入金属本身的不同外,最大的分别之处,就是还渗入碳纤维材料,无论散热,强度还是表面质感都优于铝镁合金材质,而且加工性能更好,外形比铝镁合金更加的复杂多变。其关键性的突破是强韧性更强、而且变得更薄。就强韧性看,钛合金是镁合金的三至四倍。强韧性越高,能承受的压力越大,也越能够支持大尺寸的显示器。因此,钛合金机种即使配备15英寸的显示器,也不用在面板四周预留太宽的框架。至于薄度,钛合金厚度只有0.5mm,是镁合金的一半,厚度减半可以让笔记本电脑体积更娇小。钛合金唯一的缺点就是必须通过焊接等复杂的加工程序,才能做出结构复杂的笔记本电脑外壳,这些生产过程衍生出可观成本,因此十分昂贵。目前,钛合金及其它钛复合材料依然是IBM专用的材料,这也是IBM笔记本电脑比较贵的原因之一。碳纤维:碳纤维材质是很有趣的一种材质,它既拥有铝镁合金高雅坚固的特性,又有ABS工程塑料的高可塑性。它的外观类似塑料,但是强度和导热能力优于普通的ABS塑料,而且碳纤维是-一种导电材质,可以起到类似金属的屏蔽作用(ABS外壳需要另外镀一层金属膜来屏蔽)。因此,早在1998年4月IBM公司就率先推出采用碳纤维外壳的笔记本电脑,也是IBM公司一直大力促销的主角。据IBM公司的资料显示,碳纤维强韧性是铝镁合金的两倍,而且散热效果最好。若使用时间相同,碳纤维机种的外壳摸起来最不烫手。碳纤维的缺点是成本较高,成型没有ABS外壳容易,因此碳纤维机壳的形状一般都比较简单缺乏变化,着色也比较难。此外,碳纤维机壳还有一个缺点,就是如果接地不好,会有轻微的漏电感,因此IBM在其碳纤维机壳上覆盖了一层绝缘涂层。PC-GFT#(聚碳酸酯PC):PC-GFT#也是笔记本电脑外壳采用的材料的一种,它的原料是石油,经聚酯切片工厂加工后就成了聚酯切片颗粒物,再经塑料厂加工就成了成品,从实用的角度,其散热性能也比ABS塑料较好,热量分散比较均匀,它的最大缺点是比较脆,•跌就破,我们常见的光盘就是用这种材料制成的。运用这种材料比较显著的就是FUJITSU了,在很多型号中都是用这种材料,而且是全外壳都采用这种材料。不管从表面还是从触摸的感觉上,PC-GFT#材料感觉都像是金属。如果笔记本电脑内没有标识的话,单从外表面看不仔细去观察,可能会以为是合金物。ABS工程塑料:ABS工程塑料即PC+ABS(工程塑料合金),在化工业的中文名字叫塑料合金,之所以命名为PC+ABS,是因为这种材料既具有PC树脂的优良耐热耐候性、尺寸稳定性和耐冲击性能,又具有ABS树脂优良的加工流动性。所以应用在薄壁及复杂形状制品,能保持其优异的性能,以及保持塑料与一-种酯组成的材料的成型性。ABS工程塑料最在的缺点就是质量重、导热性能欠佳。一般来说,ABS工程塑料由于成本低,被大多数笔记本电脑厂商采用,目前多数的塑料外壳笔记本电脑都是采用ABS工程塑料做原料的。.迅驰移动计算技术迅驰的概念:英特尔迅驰移动计算技术是英特尔最出色的笔记本电脑技术。它不仅仅是一枚处理器,同时还具备集成的无线局域网能力,卓越的移动计算性能,并在便于携带的轻、薄笔记本电脑外形中提供了耐久的电池使用时间。这些组件包括英特尔奔腾M处理器,移动式英特尔915高速芯片组家族或英特尔855芯片组家族,英特尔PRO/无线网卡家族。主要特点:.集成无线局域网能力:凭借英特尔迅驰移动计算技术的集成无线局域网能力,无需使用线缆、板卡和天线。借助英特尔迅驰移动计算技术的Wi-Fi认证技术,可以通过无线互联网和网络连接访问信息和进行现场交流。遍布全球的许多公共Wi-Fi网络(称为“无线热点”)都可以提供这种连接能力。此外,英特尔迅驰移动计算技术设计用于支持广泛的工业无线局域网(WLAN)安全标准和领先的第三方安全解决方案(如思科兼容性扩展),因此可以确定数据已经得到最新的无线安全标准的保护。此外,英特尔还将与思科等厂商合作,共同为领先的第三方安全解决方案提供支持。.卓越的移动计算性能:面对现在的多任务处理移动计算生活,在远离家庭或办公室的时候,同样希望获得出色的移动计算性能。鉴于移动计算应用变得越来越复杂,并且要求速度更快、效率更高的计算性能,英特尔迅驰移动计算技术经过专门设计,旨在以更低能耗提供更快的指令执行速度,进而全面满足新兴和未来应用的需求。英特尔迅驰移动计算技术中支持出色移动计算性能的•些主要特性包括:微操作融合,能够将操作合并,从而减少执行指令所需要的时间和能量。节能型二级高速缓存和增强的数据预取能力可减少片外内存访问次数,并提高二级高速缓存内有效数据的可用性。先进的指令预测能力将分析过去的行为并预测将来可能需要哪些操作,从而消除CPU重复处理。专用堆栈管理器能够通过执行普通的“管家”职能来改进处理效率。.支持耐久的电池使用时间:英特尔迅驰移动计算技术可提供出色的移动计算性能,同时借助下列节能技术支持耐久的电池使用时间,智能电力分配技术可将系统电源分配给处理器需求最高的应用。全新的节能晶体管技术可以优化能量的使用和消耗,以便降低CPU的能耗。增强的英特尔SpeedStep技术支持可以动态增强应用性能和电力利用率。.种类繁多的笔记本电脑设计:英特尔迅驰移动计算技术能支持从轻薄型到全尺寸型等最新的笔记本电脑设计。为了将高性能处理器集成到最新的纤巧和超纤巧的笔记本电脑、平板电脑及其它领先的电脑设计中,英特尔迅驰移动计算技术使用MicroFCPGA(倒装针栅格阵列)和FCBGA(倒装球栅格阵列)技术,来支持专门为更薄、更轻的笔记本电脑设计而优化的封装处理器芯片。全新笔记本电脑更小巧的外形设计需要专门考虑降低能耗,以控制散热量。为了满足这一要求,英特尔迅驰移动计算技术采用低压(LV)和超低压(ULV)技术,支持处理器以更低的电压运行,从而降低平板和超纤巧设计笔记本电脑的散热量。.迅驰二代迅驰二代:全新英特尔迅驰移动计算技术平台(代号为Sonoma),该平台由90nm制程的Dothan核心(2MBL2缓存,533MHzFSB)的PentiumM处理器、全新Aviso芯片组、新的无线模组Calexico2(英特尔PRO/无线2915ABG或2200BG无线局域网组件)三个主要部件组成。增加的新技术:全新英特尔图形媒体加速器900显卡内核、节能型533MHz前端总线、以及双通道DDR2内存支持,有助于采用配备集成显卡的移动式英特尔915GM高速芯片组的系统,获得双倍的显卡性能提升。此外,全新英特尔迅驰移动计算技术还支持最新PCIExpress图形接口,可为采用独立显卡的高端系统提供最高达4倍的图形带宽。在系统制造商的支持下,还可获得诸如电视调谐器、支持DolbyDigital和7.1环绕声的英特尔高清晰度音频、个人录像机和遥控等选件,同时继续享有英特尔迅驰移动技术计算具备的耐久电池使用时间优势。可帮助制造商实现耐久电池使用时间的特性包括:显示节能技术2.0、低功耗DDR2内存支持、以及增强型英特尔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论