



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EconometricsI.TakeHomeFinalExam.TodayisThursdayDecember14.ThisexamisduebyFriday,December22.Youmaysubmityouranswerstomeelectronicallyasanattachmenttoane-mailifyouwish.Therearefivepartsworth20%each.Recall,thisexamprovides40%ofyourgradeforthiscourse.Thefollowing25observationsareusedforthispartoftheexamination:16.00014.0008.00016.00014.0008.00022.0008.000014.00023.00022.00015.00021.00015.00025.00016.000Read;Nobs=25;Nvar=l;Names=Y;ByVariables$23.00025.00017.00023.00014.00022.00010.00018.00014.00016.00019.00027.000(ALIMDEPREADcommandisincludedifyouwishtouseit.YoucanjusttransplantthisintotheeditorinLIMDEPandexecuteittoinputthedata.)SupposewebelievethatthedataonYaregeneratedbyapoissondistribution.Then,theprobabilitydensityfunctionforYisf(Y)=exp(-X)XY/Y!LetX=exp(a)Wearegoingtoestimatetheparameteroc.TOC\o"1-5"\h\zPOISSON;Lhs=Y;Rhs=ONE$+ +PoissonRegression |MaximumLikelihoodEstimates |Dependentvariable Y |Weightingvariable ONE INumberofobservations 25 |Iterationscompleted 5 |Loglikelihoodfunction -78.30529 |Chi-squared=37.50783RsqP=.0000|G-squared= 39.52722RsqD= .0000 |Overdispersiontests:g=mu(i) : 1.447 |Overdispersiontests:g=mu(i)人2: 1.447 | 十+ + + + + + +IVariable | Coefficient | StandardError |b/St.Er.|P[|Z|>z] | Meanof X|+ + + + + + +Constant2.883682770 .47298377E-01 60.968 .0000Thetablegivestheestimateofa.Whatistheestimatedasymptoticdistribution?Theexpectedvalueoftherandomvariable,Yis口二九=exp(a).Estimate日usingyourmaximumlikelihoodestimate.Estimatetheasymptoticstandarderrorofthisestimator.Presenta95%confidenceintervalfortheparameterbasedonyourresults.Since二E[Y]isX,youshouldbeabletoestimatewiththesamplemeanoftheobservationsonY.Doso,anddescribeyourfinding.Usingthefamiliarformulaforthevarianceofthemean,estimatethestandarderrorofthisestimator,andcompareyourresulttothatin(b).Thevarianceofthisrandomvariableisa2=X.Youshouldbeabletoestimatec2withthesamplevarianceoftheobservationsonY.Doso,andcompareyourestimatetotheoneyougetbyusingtheMLEinthetable.Doesthedifferenceappeartobesmallorisitlargeenoughtomakeyoususpectthatthemodelwhichhasthesamemeanandvarianceisincorrect?Howmightyoutestthisassumption?
ILContinuingpartI,wealsohavethefollowingdataonXRead;Nobs=25;Nvar=l;Names=X;ByVariables$16111223232122241215222116201715171417231915252212Wewillnowformulateakindofregressionmodel.WebelievethatY|XhasthePoissondistributionspecifiedearlier,butnow,X=Exp[a+px]Thetablebelowpresentsthemaximumlikelihoodestimatesoftheparametersofthismodel.+ IPoissonRegressionIMaximumLikelihoodEstimatesYONE255-68.12529-78.3052920.36001YONE255-68.12529-78.3052920.360011.6414944E-05IWeightingvariableINumberofobservationsIIterationscompletedILoglikelihoodfunctionIRestrictedloglikelihoodIChi-squaredIDegreesoffreedomISignificancelevelIChi-squared=IG-squared=IOverdispersionIOverdispersion+ 18.7309319.16722IChi-squared=IG-squared=IOverdispersionIOverdispersion+ 18.7309319.16722RsqP=RsqD=.5006.5151tests:g=mu(i) :-1.360tests:g=mu(i)A2:-1.591TOC\o"1-5"\h\z+ + + + + + +IVariable | Coefficient | StandardError |b/St.Er.|P[|Z|>z] | Meanof X|+ + + + + + +Constant1.924770881 .22497947 8.555 .0000X .5152813743E-01 .11545125E-01 4.463 .0000 18.160000Asbefore,thisisXwhichisnowWeareinterestedintheexpectedvalueofY|X.Asbefore,thisisXwhichisnowE[Y|X]=exp(a+pX)Usingyourresultsabove,estimatetheslopeofthisregressionatthemeanofX(18.16).LinearlyregressYonaconstantandX.Whatistheslopeinthisregression.Comparethisslopetothemaximumlikelihoodestimates.Theproceduresin(a)and(b)abovesuggesttwomethodsofestimatingaandp.Comparethetwointermsofconsistencyandefficiency.SinceE[Y|X]isafairlysimplefunctionofX,youmightalsoconsidernonlinearleastsquaresestimationofaandp.Describeindetailhowtocomputethenonlinearleastsquaresestimatesofaandp.Howwouldyoucomputeasymptoticstandarderrorsforyourestimators?(e)HowwouldyouformaconfidenceintervalforyourestimateofE[Y|X=X].UsingtheresultsinpartsIandII,testthehypothesisthatPequals0usingaWaldtestandusingalikelihoodratiotest.DescribehowonewouldcarryoutaLagrangemultipliertestofthishypothesis.Thefollowingquestionsarebasedontheregressionmodel:Y=01+p2*X+(33*Z+04*XZ+p5*D+££isassumedtobezeromean,homoscedastic,andnonautocorrelated.Thefollowingdataareobtained:(notethatXZistheproduct,XtimesZ.)YXZXZD6.544956.185792.7446216.9776.0000005.019148.203002.9578824.26351.0000020.2805.9287391.648391.53092.00000015.77133.671902.346338.615491.0000015.32443.200562.796358.94989.0000007.274129.499232.0856719.81231.00000-2.327039.743622.7390926.6887.00000013.00438.572271.8325715.70931.0000012.377214.49951.4521421.05531.000001.876549.157492.6600324.3592.0000006.059849.914961.9052018.8900.00000013.28948.802481.088609.58238.00000018.86155.255471.555138.172941.0000016.66771.514291.569882.37725.00000021.08265.439691.073805.84114.000000-11.994113.77182.8295738.9683.00000018.47801.798222.819295.06970.0000001.3483611.36362.5403028.86701.000009.7277811.53761.8909621.81711.0000021.37924.682371.348366.313521.0000016.32217.201461.372089.880981.0000021.56793.536082.241737.926941.000004.751339.288012.2102220.5285.00000010.06324.797552.2640510.8619.00000015.417913.42511.1515415.4595.000000Estimatetheparametersofthemodelusingordinaryleastsquares.Presentallresultsandexplainyourcomputations.Inadditiontotheslopes,estimatetheparametero,thestandarddeviationof8.TestthehypothesisthatneitherXnorZhaveanyexplanatorypowerintermsofexplainingvariationinY.TestthehypothesisthatZdoesnothaveanyexplanatorypowerinexplainingvariationinY.TestthehypothesisthatthecoefficientsonXandZintheregressionareequal.Dothistestintwoways:Useonlythestatisticalresultsoffittingthefullregression.Fittheregressionwiththerestrictionimposed,andtestthehypothesisusingtheresultsofbothregressions.(Note,ignorethevariableXZinthiscomputation.)6.WeareinterestedinexaminingthemarginaleffectofchangesinXonE[Y|X,Z,D].Whatis5E[y|X,Z,D]/6X?ComputethiseffectwithZequaltoitsmean.Howwouldyoucomputeastandarderrorfortheestimateofthiseffect?Howwouldyoutestthehypothesisthatthiseffectequalszero?V.Thedatalistedabovearenowassumedtocomefromaprocessinwhichthereisalinearregressionmodel,butpossiblyaheteroscedasticdisturbance.TheregressionequationisY=pi+02*X+03*X+04*XZ+05*D+8shasmean0,butmaybeheteroscedastic.EstimationinthispartoftheexamisbasedonthedatayouusedinpartIV.Supposethatthetruevarianceof8isVar[e]=c2*Exp(X*D)Ifyouestimatethebetasusingordinaryleastsquares,whatarethepropertiesoftheestimator?(Bias,consistency,efficiency,truecovariancematrix.)Supposeyoubelievethatthevarianceof8isa2Exp(X*D),but,infact,thetruevarianceisjustcy2.(I.e.,yourbeliefismistaken.)SupposeyoufitthemodelbyGLSinspiteofthetruevariance.Whatarethepropertiesofyourestimator?(Note,youcanusetrueGLShere,sincetherearenofreeparametersinthevariancefunction.)Computethetwoestimatorsyoudescribedinparts1and2,andreportallresults.(Note,inpart2,therearenoparametersinthevariancepart,soyoucancomputethetrueGLSestimator.)ComparethevariancesoftheOLSandGLSestimator,bothtrueandestimated.Usingtheleastsquaresresults,computetheWhiteestimatorforthevarianceoftheOLSestimator.Describewhyyouwoulddothiscomputation.Supposethetruemodelis,infactVarfs]=W*Exp(aXD)whereaisaparametertobeestimated.Howwouldyoutestthehypothesisthatalphaequals1.0againstthealternativehypothesisthatalphaisnotequalto1.0?Givefull
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校游泳馆管理制度
- 学校营养政管理制度
- 学生上学队管理制度
- 学生用手机管理制度
- 宁洱县财务管理制度
- 安全生物柜管理制度
- 安环部综合管理制度
- 安防部工作管理制度
- 实行平安卡管理制度
- 宠物火化店管理制度
- 温敏型羟丁基壳聚糖护创敷料技术审评报告
- (完整版)装饰装修工程监理规划
- 英语专业四级写作评分标准
- 链板回转式格栅除污机出厂检验报告(LF型)
- 陕西省中小学学生休学复学申请表
- 模具外发加工与验收标准及流程
- 空调水管、流量、流速、管径自动计算以及推荐表和水管各种参数对照表47729
- 《架空输电线路防鸟挡板技术规范》征求
- 浙江省高速公路服务区建设指南
- 篮球行进间体前变向换手运球说课
- 建筑施工内审检查表(各部门完整)(共13页)
评论
0/150
提交评论