




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为()A.2 B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个3.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1034.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,355.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)6.近似数精确到()A.十分位 B.个位 C.十位 D.百位7.在同一直角坐标系中,二次函数y=x2与反比例函数y=1x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3A.1B.mC.m2D.18.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.189.如图,是的外接圆,已知,则的大小为A. B. C. D.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A.6 B.8 C.10 D.12二、填空题(共7小题,每小题3分,满分21分)11.若分式a2-9a+312.如果,那么=_____.13.若有意义,则x的取值范围是.14.使分式x215.一组数据1,4,4,3,4,3,4的众数是_____.16.圆锥的底面半径为4cm,高为5cm,则它的表面积为______cm1.17.写出一个一次函数,使它的图象经过第一、三、四象限:______.三、解答题(共7小题,满分69分)18.(10分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)19.(5分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.(8分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.21.(10分)如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.22.(10分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.23.(12分)先化简,再求值:1+xx2-124.(14分)观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.2、B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.3、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:135000=1.35×105故选B.【点睛】此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.5、A【解析】
由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.6、C【解析】
根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字7、D【解析】
本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=m或x=-m.令反比例函数中y=m,即1x=m,解得x=1m,将x的三个值相加得到ω=m+(-m)+【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.8、A【解析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.9、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.10、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式a2∴a2解得a=1.考点:分式的值为零的条件.12、【解析】试题解析:设a=2t,b=3t,故答案为:13、x≥8【解析】略14、1【解析】试题分析:根据题意可知这是分式方程,x2答案为1.考点:分式方程的解法15、1【解析】
本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中1是出现次数最多的,故众数是1.故答案为1.【点睛】本题为统计题,考查了众数的定义,是基础题型.16、【解析】
利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1.【详解】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm1;由勾股定理得,母线长=,圆锥的侧面面积,∴它的表面积=(16π+4)cm1=cm1,故答案为:.【点睛】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.17、y=x﹣1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).三、解答题(共7小题,满分69分)18、3.05米【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到正确结论.【详解】解:如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.19、(1)每次下调10%(2)第一种方案更优惠.【解析】
(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得
5000×(1-x)2=4050
解得x=10%或x=1.9(舍去)
答:平均每次下调10%.
(2)9.8折=98%,
100×4050×98%=396900(元)
100×4050-100×1.5×12×2=401400(元),
396900<401400,所以第一种方案更优惠.
答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.20、(1)见解析;(2)证明见解析.【解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.21、(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=a(cm);理由详见解析(3)b(cm)【解析】
(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=AC+BC=(AC+BC)=AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵AC+CB=acm,∴MN=AC+BC=(AC+BC)=cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵AC-CB=bcm,∴MN=AC-BC=(AC-BC)=cm.考点:两点间的距离.22、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)①首先由函数y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1=,令y=x,则,解得:x=±1,∴函数的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,∴函数y=x1的不变值为:2或1,q=1﹣2=1;(1)①函数y=1x1﹣bx,令y=x,则x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,∴函数G的图象关于x=m对称,∴G:y=.∵当x1﹣1x=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业办公租赁合同标准版
- 债权质押合同标准文本
- 会展店铺转让合同标准文本
- 乙方路牙石安装合同标准文本
- 2025年终止销售代理合同协议书
- 电话拜访技巧课件
- 2025中介协议租赁签订合同
- 电工作业考证实训交流接触器课件
- 公司代管理合同标准文本
- 人物角色形象使用合同标准文本
- 过程能力测量报告 Cg Cgk
- 免疫学检验技术-免疫原和抗血清的制备
- 《遵义会议》教学课件
- 电站地震应急处置方案
- 传感器与检测技术(项目式)PPT完整全套教学课件
- 留守儿童家校联系卡模板
- 一级烟草专卖管理师理论考试题库(含答案)
- LY/T 1956-2022县级林地保护利用规划编制技术规程
- 四川省2023级普通高中学业水平考试通用技术试卷
- 12D101-5《110kV及以下电缆敷设》
- 中级微观经济学第四讲斯勒茨基分解
评论
0/150
提交评论