




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数在闭区间上的最值一、复习回顾初中阶段我们学了二次函数的哪些知识?二次函数的概念;2、二次函数的解析式有三种形式:一般两根三顶点;3、二次函数的图像画法、性质特征;函数二次函数图像a>0a<0y0xy0x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是;(3)在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大,(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=时,y有最大值,练:求二次函数的最小值。思考:求函数在区间[0,3]上的最值?函数在区间上的最小值?函数在上的最大值。二、二次函数在闭区间上的最值研究。(一)、正向型是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1.函数在区间[0,3]上的最大值是_________,最小值是_______。解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其对称轴在[0,3]上,如图1所示。函数的最大值为,最小值为。图12、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例2.如果函数定义在区间上,求的最小值。解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。图1如图2所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值。图2如图3所示,若顶点横坐标在区间右侧时,有,即。当时,函数取得最小值综上讨论,图33、轴变区间定二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例3.求函数在上的最大值。解:函数图象的对称轴方程为,应分,,即,和这三种情形讨论,下列三图分别为(1);由图可知(2);由图可知(3)时;由图可知;即通过以上几个问题的分析可知,不管是哪种形式的二次函数的最值总在对称轴的位置或定义域的两个端点处取得,而我们要知道二次函数最值是在这三个位置中的哪个位置,所要做的工作就是去分析图像,讨论对称轴与定义域的位置关系。以上问题都是利用解析式和区间求最值得问题,我们称之为正向型问题。(二)、逆向型是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。例4.已知函数在区间上的最大值为4,求实数a的值。解:(1)若,不符合题意。(2)若则由,得(3)若时,则由,得综上知或例5.已知二次函数在区间上的最大值为3,求实数a的值。这是一个逆向最值问题,若从求最值入手,需分与两大类五种情形讨论,过程繁琐不堪。若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。具体解法为:(1)令,得此时抛物线开口向下,对称轴方程为,且,故不合题意;(2)令,得此时抛物线开口向上,对称轴方程为,闭区间的右端点距离对称轴较远,故符合题意;(3)若,得此时抛物线开口向下,对称轴方程为,闭区间的右端点距离对称轴较远,故符合题意。综上,或解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。三、课后小结:影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴和区间的位置。这是我们研究二次函数在闭区间上最值得关键。按函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值:(1)当时,的最小值是的最大值是中的较大者。(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一怀旧风活动方案
- 六一汉服诗歌活动方案
- 六一活动宝宝活动方案
- 六一活动常规活动方案
- 六一活动抽纸活动方案
- 六一活动游泳馆活动方案
- 六一活动车展活动方案
- 六一节商场活动方案
- 六一讲故事比赛活动方案
- 六一茶坊活动策划方案
- Unit9SectionB2a-2e课件-人教版八年级英语下册
- KRONES灌装检测工作原理及工艺参数调整
- SJG 01-2010 深圳市地基基础勘察设计规范
- 物业维修流程培训
- 大学美育(同济大学)学习通测试及答案
- 2024年中考模拟试卷数学(湖南卷)
- 医院培训课件:《便携式血糖仪临床操作和质量管理》
- 充电桩工程施工技术方案
- 急性心肌梗死健康教育课件
- 2024年教师资格考试小学面试科学试题及答案指导
- (一模)宁波市2024学年第一学期高考模拟考试 数学试卷(含答案)
评论
0/150
提交评论