版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆的标准方程及性质椭圆的标准方程及性质椭圆的标准方程及性质资料仅供参考文件编号:2022年4月椭圆的标准方程及性质版本号:A修改号:1页次:1.0审核:批准:发布日期:椭圆的标准方程及性质1.椭圆的两种定义:(1)平面内与两定点F1,F2的距离的和等于定长的点的轨迹,即点集M={P||PF1|+|PF2|=2a,2a>|F1F2|};(时为线段,无轨迹).其中两定点F1,F2叫焦点,定点间的距离叫焦距.(2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|,0<e<1的常数.2.标准方程:(1)焦点在x轴上,中心在原点:(a>b>0);焦点F1(-c,0),F2(c,0).其中(2)焦点在y轴上,中心在原点:(a>b>0);焦点F1(0,-c),F2(0,c).其中3.椭圆一般方程两种标准方程可用统一形式表示:Ax2+By2=1(A>0,B>0,A≠B当A<B时,椭圆的焦点在x轴上,A>B时焦点在y轴上),已知椭圆上的两个点这种形式用起来更方便.4.共焦点的椭圆标准方程形式上的差异共焦点,则c相同。与椭圆共焦点的椭圆方程可设为,此类问题常用待定系数法求解。5.共离心率椭圆方程的椭圆标准方程共离心率,则e相同。与椭圆共焦点的椭圆方程可设为,6:椭圆与的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于轴、轴和原点对称顶点,,轴长长轴长=,短轴长=离心率准线方程焦半径,,7.性质:对于椭圆(a>b>0)如下性质必须熟练掌握:1.范围;②对称轴、对称中心;③顶点;④焦点、焦距;⑤准线方程;⑥离心率.焦半径.2.焦准距;两准线间的距离;通径长.半通径.3.最大角4.8.点与椭圆的位置关系:当时,点在椭圆外;当时,点在椭圆内;当时,点在椭圆上;9.直线与椭圆的位置关系直线与椭圆相交;直线与椭圆相切;直线与椭圆相离10.弦长公式11.对椭圆方程作三角换元可得椭圆的参数方程:,为参数.12.有关圆锥曲线弦的中点和斜率问题可利用“点差法”及结论:13对椭圆:,则kAB=.第三章:直线与方程的知识点倾斜角与斜率1.当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,我们规定它的倾斜角为0°.则直线l的倾斜角的范围是.2.倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即.如果知道直线上两点,则有斜率公式.特别地是,当,时,直线与x轴垂直,斜率k不存在;当,时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合.当α=90°时,斜率k=0;当时,斜率,随着α的增大,斜率k也增大;当时,斜率,随着α的增大,斜率k也增大.这样,可以求解倾斜角α的范围与斜率k取值范围的一些对应问题.两条直线平行与垂直的判定1.对于两条不重合的直线、,其斜率分别为、,有:(1);(2).2.特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x轴;….直线的点斜式方程1.点斜式:直线过点,且斜率为k,其方程为.2.斜截式:直线的斜率为k,在y轴上截距为b,其方程为.3.点斜式和斜截式不能表示垂直x轴直线.若直线过点且与x轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为,或.4.注意:与是不同的方程,前者表示的直线上缺少一点,后者才是整条直线.直线的两点式方程1.两点式:直线经过两点,其方程为,2.截距式:直线在x、y轴上的截距分别为a、b,其方程为.3.两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.4.线段中点坐标公式.直线的一般式方程1.一般式:,注意A、B不同时为0.直线一般式方程化为斜截式方程,表示斜率为,y轴上截距为的直线.2.与直线平行的直线,可设所求方程为;与直线垂直的直线,可设所求方程为.3.已知直线的方程分别是:(不同时为0),(不同时为0),则两条直线的位置关系可以如下判别:(1);(2);(3)与重合;(4)与相交.如果时,则;与重合;与相交.两条直线的交点坐标1.一般地,将两条直线的方程联立,得到二元一次方程组.若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2.方程为直线系,所有的直线恒过一个定点,其定点就是与的交点.两点间的距离1.平面内两点,,则两点间的距离为:.特别地,当所在直线与x轴平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度采光井玻璃更换与维护合同3篇
- 二零二五年度气象站气象数据安全保障合同3篇
- 2024苏州租赁合同含宠物饲养及养护服务条款3篇
- 2024版民间借贷合同范例
- 2025年度茶楼装修工程消防设施合同范本4篇
- 2025年度10kv配电站施工期间质量检测与验收合同正规范本3篇
- 2025年度教育机构LOGO知识产权许可合同范本3篇
- 2025年度智能物流系统全国代理销售合同4篇
- 2025年度厂房施工合同施工人员培训协议(新版)3篇
- 2025年度智能工厂改造装修合同模板3篇
- 小学四年级数学知识点总结(必备8篇)
- GB/T 893-2017孔用弹性挡圈
- GB/T 11072-1989锑化铟多晶、单晶及切割片
- GB 15831-2006钢管脚手架扣件
- 医学会自律规范
- 商务沟通第二版第4章书面沟通
- 950项机电安装施工工艺标准合集(含管线套管、支吊架、风口安装)
- 微生物学与免疫学-11免疫分子课件
- 《动物遗传育种学》动物医学全套教学课件
- 弱电工程自检报告
- 民法案例分析教程(第五版)完整版课件全套ppt教学教程最全电子教案
评论
0/150
提交评论