



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.2.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A. B.C. D.3.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.74.复数,是虚数单位,则下列结论正确的是A. B.的共轭复数为C.的实部与虚部之和为1 D.在复平面内的对应点位于第一象限5.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.6.已知函数,若,则的值等于()A. B. C. D.7.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.128.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.9.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.10.已知锐角满足则()A. B. C. D.11.在中,角的对边分别为,,若,,且,则的面积为()A. B. C. D.12.已知实数x,y满足,则的最小值等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数.若在区间上恒成立.则实数的取值范围是__________.14.下图是一个算法流程图,则输出的的值为__________.15.已知数列与均为等差数列(),且,则______.16.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.18.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.19.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.20.(12分)如图,在正四棱锥中,,,为上的四等分点,即.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.21.(12分)已知函数,为的导数,函数在处取得最小值.(1)求证:;(2)若时,恒成立,求的取值范围.22.(10分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【题目详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【答案点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).2.C【答案解析】
根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【题目详解】因为,且的图象经过第一、二、四象限,所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则|,即,所以.故选:C.【答案点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.3.C【答案解析】
根据程序框图程序运算即可得.【题目详解】依程序运算可得:,故选:C【答案点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.4.D【答案解析】
利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论.【题目详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D.【答案点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.5.D【答案解析】
按照复数的运算法则先求出,再写出,进而求出.【题目详解】,,.故选:D【答案点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.6.B【答案解析】
由函数的奇偶性可得,【题目详解】∵其中为奇函数,也为奇函数∴也为奇函数∴故选:B【答案点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数7.D【答案解析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【题目详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【答案点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.8.B【答案解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【题目详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【答案点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.9.D【答案解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【题目详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【答案点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.10.C【答案解析】
利用代入计算即可.【题目详解】由已知,,因为锐角,所以,,即.故选:C.【答案点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.11.C【答案解析】
由,可得,化简利用余弦定理可得,解得.即可得出三角形面积.【题目详解】解:,,且,,化为:.,解得..故选:.【答案点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.12.D【答案解析】
设,,去绝对值,根据余弦函数的性质即可求出.【题目详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【答案点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【题目详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:【答案点睛】本题考查一元二次不等式及函数的综合问题,属于基础题.14.3【答案解析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【题目详解】解:初始,第一次循环:;第二次循环:;第三次循环:;经判断,此时跳出循环,输出.故答案为:【答案点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.15.20【答案解析】
设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,,解方程求出公差,代入等差数列的通项公式即可求解.【题目详解】设等差数列的公差为,由数列为等差数列知,,因为,所以,解得,所以数列的通项公式为,所以.故答案为:【答案点睛】本题考查等差数列的概念及其通项公式和等差中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.16.【答案解析】
由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【题目详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为:.【答案点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)3+3【答案解析】
(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周长.【题目详解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周长a+b+c=3+3.【答案点睛】本题考查三角函数恒等变换的应用,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于中档题.18.(1)答案不唯一,具体见解析(2)【答案解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【题目详解】解:(1)因为,所以,①当时,,在上单调递减.②当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,,令,得.设,则.当时,,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,,符合题意.当时,,所以有唯一实根,当时,,在上单调递增,,不符合题意.综上,,即的取值范围为.【答案点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.19.(Ⅰ);(Ⅱ)证明见解析【答案解析】
(Ⅰ)求导得到,,解得答案.(Ⅱ),故,在上单调递减,在上单调递增,,设,证明函数单调递减,故,得到证明.【题目详解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,,故恒成立,故单调递减.,故当时,.【答案点睛】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.20.(1)答案见解析.(2)【答案解析】
(1)根据题意可得,在中,利用余弦定理可得,然后同理可得,利用面面垂直的判定定理即可求解.(2)以为原点建立直角坐标系,求出面的法向量为,的法向量为,利用空间向量的数量积即可求解.【题目详解】(1)由由因为是正四棱锥,故于是,由余弦定理,在中,设再用余弦定理,在中,∴是直角,同理,而在平面上,∴平面平面(2)以为原点建立直角坐标系,如图:则设面的法向量为,的法向量为则,取于是,二面角的余弦值为:【答案点睛】本题考查了面面垂直的判定定理、空间向量法求二面角,属于基础题.21.(1)见解析;(2).【答案解析】
(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,,分析可得的最小值为,分,讨论即得解.【题目详解】(1)由题意,令,则,知为的增函数,因为,,所以,存在使得,即.所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值.故,于是有,即,所以有,证毕.(2)由(1)知,的最小值为,①当,即时,为的增函数,所以,,由(1)中,得,即.故满足题意.②当,即时,有两个不同的零点,,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为.注意到时,,且此时,(ⅰ)当时,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)当时,,所以,所以由(*)知时,为减函数,所以,不满足时,恒成立,故舍去.故满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45230-2025数据安全技术机密计算通用框架
- 借用林地协议合同范本
- 包装纸盒合同范本
- 北京车辆过户合同范本
- 军事拓展协议合同范本
- 企业价值咨询合同范本
- 动产个人抵押合同范本
- 人工劳务外包合同范本
- 企业绿化合同范本
- 农业机械改装项目合同范例
- 本科生毕业论文写作指导-课件
- 硬质岩层组合切割开挖技术
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 《商务沟通-策略、方法与案例》课件 第九章 职场沟通
- 微电网经济性研究-洞察分析
- 2024年考研管理类综合能力(199)真题及解析完整版
- 2020-2024年五年高考地理真题分类汇编专题02(地球运动)+解析版
- 水文与水资源勘测基础知识单选题100道及答案解析
- 销售沙盘演练培训
- 药物临床试验伦理审查应急预案
- 书法培训合作合同范例
评论
0/150
提交评论