2022年黑龙江省哈尔滨市第九中学高三下学期联合考试数学试题含解析_第1页
2022年黑龙江省哈尔滨市第九中学高三下学期联合考试数学试题含解析_第2页
2022年黑龙江省哈尔滨市第九中学高三下学期联合考试数学试题含解析_第3页
2022年黑龙江省哈尔滨市第九中学高三下学期联合考试数学试题含解析_第4页
2022年黑龙江省哈尔滨市第九中学高三下学期联合考试数学试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.2.已知集合A,则集合()A. B. C. D.3.已知函数,若,则的取值范围是()A. B. C. D.4.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A. B. C. D.5.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是()A. B. C. D.7.在中,点D是线段BC上任意一点,,,则()A. B.-2 C. D.28.已知正项等比数列满足,若存在两项,,使得,则的最小值为().A.16 B. C.5 D.49.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过10.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线11.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.12.已知集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.3张奖券分别标有特等奖、一等奖和二等奖.甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是__________.14.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.15.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.16.在的二项展开式中,所有项的系数的和为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:,,,,(单位:元),得到如图所示的频率分布直方图.(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.18.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.19.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.20.(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.21.(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.22.(10分)已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.2.A【解析】

化简集合,,按交集定义,即可求解.【详解】集合,,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.3.B【解析】

对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.4.D【解析】

根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.5.C【解析】

由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,,对应点为,在第三象限.故选:C.【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.6.D【解析】

根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,,则,解得:设,,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.7.A【解析】

设,用表示出,求出的值即可得出答案.【详解】设由,,.故选:A【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.8.D【解析】

由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.9.D【解析】

先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.10.C【解析】

充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.11.C【解析】

令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.12.B【解析】

求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用排列组合公式进行计算,再利用古典概型公式求出不是特等奖的两张的概率即可.【详解】解:3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,则两人同时抽取两张共有:种排法排除特等奖外两人选两张共有:种排法.故两人都未抽得特等奖的概率是:故答案为:【点睛】本题主要考查古典概型的概率公式的应用,是基础题.14.【解析】

将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.15.【解析】

将四面体补成一个正方体,通过正方体的对角线与球的半径的关系,得到球的半径,利用球的表面积公式,即可求解.【详解】如图所示,将正四面体补形成一个正方体,则正四面体的外接球与正方体的外接球表示同一个球,因为正四面体的棱长为1,所以正方体的棱长为,设球的半径为,因为球的直径是正方体的对角线,即,解得,所以球的表面积为.【点睛】本题主要考查了有关求得组合体的结构特征,以及球的表面积的计算,其中巧妙构造正方体,利用正方体的外接球的直径等于正方体的对角线长,得到球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.16.1【解析】

设,令,的值即为所有项的系数之和。【详解】设,令,所有项的系数的和为。【点睛】本题主要考查二项式展开式所有项的系数的和的求法─赋值法。一般地,对于,展开式各项系数之和为,注意与“二项式系数之和”区分。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)3360元;(2)见解析【解析】

(1)根据频率分布直方图计算每个农户的平均损失;(2)根据频率分布直方图计算随机变量X的可能取值,再求X的分布列和数学期望值.【详解】(1)记每个农户的平均损失为元,则;(2)由频率分布直方图,可得损失超过1000元的农户共有(0.00009+0.00003+0.00003)×2000×50=15(户),损失超过8000元的农户共有0.00003×2000×50=3(户),随机抽取2户,则X的可能取值为0,1,2;计算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列为;X012P数学期望为E(X)=0×+1×+2×=.【点睛】本题考查了频率分布直方图与离散型随机变量的分布列与数学期望计算问题,属于中档题.18.(1)极大值,无极小值;(2).(3)见解析【解析】

(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,所以在区间上恒成立.当时,在区间上恒成立,当时,,设,则在区间上恒成立.所以在单调递增,则,所以,即综上所述.(3)由(2)可知当时,函数在区间上递增,所以,即,取,则.所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.19.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;(Ⅱ)求得,然后利用裂项相消法可求得.【详解】(Ⅰ)设数列的公比为,由题意及,知.、、成等差数列成等差数列,,,即,解得或(舍去),.数列的通项公式为;(Ⅱ),.【点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.20.(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围.试题解析:(1)设,.............1分令,得递增;令,得递减,.................1分∴,∴,即,∴.............3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为1...........................5分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立,................................6分①设,令,得递增;令,得递减,∴,当即时,,∴,∵,∴4.故当时,对恒成立,.......................8分当即时,在上递减,∴.∵,∴,故当时,对恒成立............................10分②若对恒成立,则,∴...........11分由①及②得,.故存在实数,使得对恒成立,且的取值范围为................................................11分考点:导数应用.【思路点睛】本题考查了函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论