2023届湖北省华中师大附中高考数学一模试卷(含答案解析)_第1页
2023届湖北省华中师大附中高考数学一模试卷(含答案解析)_第2页
2023届湖北省华中师大附中高考数学一模试卷(含答案解析)_第3页
2023届湖北省华中师大附中高考数学一模试卷(含答案解析)_第4页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数,则的虚部为()A.-1 B. C.1 D.2.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.3.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A. B. C. D.4.下图所示函数图象经过何种变换可以得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是()A.方差 B.中位数 C.众数 D.平均数6.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.7.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.8.已知函数为奇函数,且,则()A.2 B.5 C.1 D.39.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.10.已知集合,,,则集合()A. B. C. D.11.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是()A.0.2 B.0.5 C.0.4 D.0.812.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平行四边形中,已知,,,若,,则____________.14.已知数列的前项和为且满足,则数列的通项_______.15.已知是偶函数,则的最小值为___________.16.已知函数,则的值为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.(Ⅰ)若线段的中点坐标为,求直线的方程;(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.18.(12分)已知,,,,证明:(1);(2).19.(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,,,使得,证明:.20.(12分)已知函数.(1)当时.①求函数在处的切线方程;②定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.21.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.22.(10分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】

分子分母同乘分母的共轭复数即可.【题目详解】,故的虚部为.故选:A.【答案点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.2.C【答案解析】

设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【题目详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【答案点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.3.A【答案解析】

结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【题目详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【答案点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题4.D【答案解析】

根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【题目详解】设函数解析式为,根据图像:,,故,即,,,取,得到,函数向右平移个单位得到.故选:.【答案点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.5.A【答案解析】

通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【题目详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【答案点睛】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.6.B【答案解析】

利用乘法运算化简复数即可得到答案.【题目详解】由已知,,所以,解得.故选:B【答案点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.7.D【答案解析】

因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【题目详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【答案点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.8.B【答案解析】

由函数为奇函数,则有,代入已知即可求得.【题目详解】.故选:.【答案点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.9.A【答案解析】

由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【题目详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【答案点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.10.D【答案解析】

根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【答案点睛】本题考查集合的混合运算,属基础题.11.B【答案解析】

利用列举法,结合古典概型概率计算公式,计算出所求概率.【题目详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【答案点睛】本小题主要考查古典概型的计算,属于基础题.12.C【答案解析】

令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【题目详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【答案点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

设,则,得到,,利用向量的数量积的运算,即可求解.【题目详解】由题意,如图所示,设,则,又由,,所以为的中点,为的三等分点,则,,所以.【答案点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.14.【答案解析】

先求得时;再由可得时,两式作差可得,进而求解.【题目详解】当时,,解得;由,可知当时,,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【答案点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.15.2【答案解析】

由偶函数性质可得,解得,再结合基本不等式即可求解【题目详解】令得,所以,当且仅当时取等号.故答案为:2【答案点睛】考查函数的奇偶性、基本不等式,属于基础题16.4【答案解析】

根据的正负值,代入对应的函数解析式求解即可.【题目详解】解:.故答案为:.【答案点睛】本题考查分段函数函数值的求解,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(Ⅱ)【答案解析】

(Ⅰ)根据点差法,即可求得直线的斜率,则方程即可求得;(Ⅱ)设出直线方程,联立椭圆方程,利用韦达定理,根据,即可求得参数的值.【题目详解】(1)设,,则两式相减,可得.(*)因为线段的中点坐标为,所以,.代入(*)式,得.所以直线的斜率.所以直线的方程为,即.(Ⅱ)设直线:(),联立整理得.所以,解得.所以,.所以,所以.所以.因为,所以.【答案点睛】本题考查中点弦问题的点差法求解,以及利用代数与几何关系求直线方程,涉及韦达定理的应用,属中档题.18.(1)证明见解析(2)证明见解析【答案解析】

(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【题目详解】证明:(1),,,(当且仅当时取等号).(2),,,,,,,.【答案点睛】本题考查不等式的证明,考查基本不等式的运用,考查逻辑推理能力,属于中档题.19.(1)(2)证明见解析(3)证明见解析【答案解析】

(1)由题意可得,,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【题目详解】(1),即,化简可得.令,,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在上,,所以在上单调递减.在上,,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,,,因而在上单调递增.当时,,,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则..设,,当时,.时,,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【答案点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.20.(1)①;②8079;(2).【答案解析】

(1)①时,,,利用导数的几何意义能求出函数在处的切线方程.②由,得,由此能求出的值.(2)根据若对任意给定的,,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围.【题目详解】(1)①∵,∴∴,∴,∵,所以切线方程为.②,.令,则,.因为①,所以②,由①+②得,所以.所以.(2),当时,函数单调递增;当时,,函数单调递减∵,,所以,函数在上的值域为.因为,,故,,①此时,当变化时、的变化情况如下:—0+单调减最小值单调增∵,,∴对任意给定的,在区间上总存在两个不同的,使得成立,当且仅当满足下列条件,即令,,,当时,,函数单调递增,当时,,函数单调递减所以,对任意,有,即②对任意恒成立.由③式解得:④综合①④可知,当时,对任意给定的,在上总存在两个不同的,使成立.【答案点睛】本题考查了导数的几何意义、应用导数研究函数的单调性、求函数最值问题,会利用导函数的正负确定函数的单调性,会根据函数的增减性求出闭区间上函数的最值,掌握不等式恒成立时所满足的条件.不等式恒成立常转化为函数最值问题解决.21.(1)见解析;(2).【答案解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论