反比例函数知识点总结_第1页
反比例函数知识点总结_第2页
反比例函数知识点总结_第3页
反比例函数知识点总结_第4页
反比例函数知识点总结_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数知识点总结反比例函数知识点总结反比例函数知识点总结xxx公司反比例函数知识点总结文件编号:文件日期:修订次数:第1.0次更改批准审核制定方案设计,管理制度反比例函数知识点总结知识点1反比例函数的定义一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x是自变量,y是x的反比例函数;⑵自变量x的取值范围是的一切实数,函数值的取值范围是;⑶比例系数是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:①(),②(),③(定值)();⑸函数()与()是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。(k为常数,)是反比例函数的一部分,当k=0时,,就不是反比例函数了,由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。知识点2用待定系数法求反比例函数的解析式由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量,函数值,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数()的符号图像性质①的取值范围是,y的取值范围是②当时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。①的取值范围是,y的取值范围是②当时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当时,y随x的增大而减小“,就会与事实不符的矛盾。反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如在第一、第三象限,则可知。☆反比例函数()中比例系数k的绝对值的几何意义。如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F分别为垂足,则反比例函数()中,越大,双曲线越远离坐标原点;越小,双曲线越靠近坐标原点。双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。初三反比例函数测练习题一、选择题(每题3分共30分)

1、下列函数中,反比例函数是(

A、y=x+1

B、y=

C、=1

D、3xy=2

2、函数y1=kx和y2=的图象如图,自变量x的取值范围相同的是(

3、函数与在同一平面直角坐标系中的图像可能是(

)。

4、反比例函数y=(k≠0)的图象的两个分支分别位于(

)象限。

A、一、二

B、一、三

C、二、四

D、一、四5、当三角形的面积一定时,三角形的底和底边上的高成(

)关系。

A、正比例函数

B、反比例函数

C、一次函数

D、二次函数6、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线上,则(

A、x1>x2>x3

B、x1>x3>x2

C、x3>x2>x1

D、x3>x1>x27、如图1:是三个反比例函数y=,y=,y=在x轴上的图像,由此观察得到k1、k2、k3的大小关系为(

A、k1>k2>k3

B、k1>k3>k2

C、k2>k3>k1

D、k3>k1>k2

8、已知双曲线上有一点P(m,n)且m、n是关于t的一元二次方程t2-3t+k=0的两根,且P点到原点的距离为,则双曲线的表达式为(

A、

B、

C、

D、

9、如图2,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为(

A、1

B、

C、2

D、

10、如图3,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为

A、2

B、

C、

D、

二、填空(每题3分共30分)

1、已知y与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。

2、如果反比例函数的图象经过点(3,1),那么k=_______。

3、设反比例函数的图象经过点(x1,y1)和(x2,y2)且有y1>y2,则k的取值范围是______。

4、若点(2,1)是反比例的图象上一点,当y=6时,则x=_______。

5、函数与y=-2x的图象的交点的坐标是____________。

6、如果点(m,-2m)在双曲线上,那么双曲线在_________象限。

7、已知一次函数y=ax+b图象在一、二、三象限,则反比例函数y=的函数值随x的增大而__________。

8、已知,那么y与x成_________比例,k=________,其图象在第_______象限。

9、菱形面积为12cm2,且对角线长分别为xcm和ycm,则y关于x的函数关系式是_________。

10、反比例函数,当x>0时,y随x的增大而增大,则m的值是

三、解答题

1、(10分)数与反比例函数的图象都过A(,1)点.求:

(1)正比例函数的解析式;

(2)正比例函数与反比例函数的另一个交点的坐标.

2、(10分)一次函数的图象与x轴,y轴分别交于A、B两点,与反比例函数的图象交于C、D两点,如果A点坐标为(2,0),点C、D在第一、三象限,且OA=OB=AC=BD,试求一次函数和反比例函数的解析式

3、(10分)如图,矩形ABCD,AB=3,AD=4,以AD为直径作半圆,为BC上一动点,可与B,C重合,交半圆于,设,求出关于自变量的函数关系式,并求出自变量的取值范围.

4、(10分)某蓄水池的排水管每时排水8m3,6小时(h)可将满水池全部排空.

(1)蓄水池的容积是多少

(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化

(3)写出t与Q之间的关系式

(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少

(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空

5、(10分)已知反比例函数y=的图象经过点A(4,),若一次函数y=x+1的图象沿x轴平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标

6、(10分)已知反比例函数y=和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点。

(1)求反比例函数的解析式

(2)已知A在第一象限,是两个函数的交点,求A点坐标

(3)利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论