解读IEEE标准754浮点数定义_第1页
解读IEEE标准754浮点数定义_第2页
解读IEEE标准754浮点数定义_第3页
解读IEEE标准754浮点数定义_第4页
解读IEEE标准754浮点数定义_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解读IEEE标准754:浮点数表示

如须转载请注明作者为Lolita@,并请保持文章的完整和提供转载出处。更新:

20060623-06:44增加了求最大非规格数的公式

20060622-23:40修改了几处笔误,换掉了实验部分的那张大图,改用代码显示。

一、背景

在IEEE标准754之前,业界并没有一个统一的浮点数标准,相反,很多计算机制造商都设计自己的浮点数规则,以及运算细节。那时,实现的速度和简易性比数字的精确性更受重视。

直到1985年Intel打算为其的8086微处理器引进一种浮点数协处理器的时候,聪明地意识到,作为设计芯片者的电子工程师和固体物理学家们,也许并不能通过数值分析来选择最合理的浮点数二进制格式。于是Intel在请加州大学伯克利分校的WilliamKahan教授──最优秀的数值分析家之一来为8087FPU设计浮点数格式;而这个家伙又找来两个专家来协助他,于是就有了KCS组合(Kahn,Coonan,andStone)。他们共同完成了Intel的浮点数格式设计,而且完成地如此出色,以致于IEEE组织决定采用一个非常接近KCS的方案作为IEEE的标准浮点格式。目前,几乎所有计算机都支持该标准,大大改善了科学应用程序的可移植性。

二、表示形式

从表面上看,浮点数也是一串0和1构成的位序列(bitsequence),并不是三头六臂的怪物,更不会咬人。然而IEEE标准从逻辑上用三元组{S,E,M}表示一个数N,如下图所示:N的实际值n由下列式子表示:其中:

★n,s,e,m分别为N,S,E,M对应的实际数值,而N,S,E,M仅仅是一串二进制位。

★S(sign)表示N的符号位。对应值s满足:n>0时,s=0;n<0时,s=1。

★E(exponent)表示N的指数位,位于S和M之间的若干位。对应值e值也可正可负。

★M(mantissa)表示N的尾数位,恰好,它位于N末尾。M也叫有效数字位(sinificand)、系数位(coefficient),甚至被称作“小数”。

三、浮点数格式

IEEE标准754规定了三种浮点数格式:单精度、双精度、扩展精度。前两者正好对应C语言里头的float、double或者FORTRAN里头的real、double精度类型。限于篇幅,本文仅介绍单精度、双精度浮点格式。

★单精度:N共32位,其中S占1位,E占8位,M占23位。★双精度:N共64位,其中S占1位,E占11位,M占52位。

值得注意的是,M虽然是23位或者52位,但它们只是表示小数点之后的二进制位数,也就是说,假定M为“010110011...”,在二进制数值上其实是“.010110011...”。而事实上,标准规定小数点左边还有一个隐含位,这个隐含位通常,哦不,应该说绝大多数情况下是1,那什么情况下是0呢?答案是N对应的n非常小的时候,比如小于2^(-126)(32位单精度浮点数)。不要困惑怎么计算出来的,看到后面你就会明白。总之,隐含位算是赚来了一位精度,于是M对应的m最后结果可能是"m=1.010110011...”或者“m=0.010110011...”

四、计算e、m

首先将提到令初学者头疼的“规格化(normalized)”、“非规格化(denormalized)”。噢,其实并没有这么难的,跟我来!掌握它以后你会发现一切都很优雅,更美妙的是,规格化、非规格化本身的概念几乎不怎么重要。请牢记这句话:规格化与否全看指数E!

下面分三种情况讨论E,并分别计算e和m:

1、规格化:当E的二进制位不全为0,也不全为1时,N为规格化形式。此时e被解释为表示偏置(biased)形式的整数,e值计算公式如下图所示:上图中,|E|表示E的二进制序列表示的整数值,例如E为"10000100",则|E|=132,e=132-127=5。k则表示E的位数,对单精度来说,k=8,则bias=127,对双精度来说,k=11,则bias=1023。

此时m的计算公式如下图所示:

标准规定此时小数点左侧的隐含位为1,那么m=|1.M|。如M="101",则|1.M|=|1.101|=1.625,即m=1.625

2、非规格化:当E的二进制位全部为0时,N为非规格化形式。此时e,m的计算都非常简单。

注意,此时小数点左侧的隐含位为0。

为什么e会等于(1-bias)而不是(-bias),这主要是为规格化数值、非规格化数值之间的平滑过渡设计的。后文我们还会继续讨论。

有了非规格化形式,我们就可以表示0了。把符号位S值1,其余所有位均置0后,我们得到了-0.0;同理,把所有位均置0,则得到+0.0。非规格化数还有其他用途,比如表示非常接近0的小数,而且这些小数均匀地接近0,称为“逐渐下溢(graduallyunderflow)”属性。

3、特殊数值:当E的二进制位全为1时为特殊数值。此时,若M的二进制位全为0,则n表示无穷大,若S为1则为负无穷大,若S为0则为正无穷大;若M的二进制位不全为0时,表示NaN(NotaNumber),表示这不是一个合法实数或无穷,或者该数未经初始化。

五、范例

仔细研读第四点后,再回忆一下文章开头计算n的公式,你应该写出一个浮点编码的实际值n了吧?还不能吗?不急,我先给你示范一下。我们假定N是一个8位浮点数,其中,S占1位,E占4位,M占3位。下面这张表罗列了N可能的正数形式,也包含了e、m等值,请你对照着这张表,重温一下第四点,你会慢慢明白的。说实在的,这张表花了我不少功夫呢,幸好TeX画表格还算省事!

这张表里头有很多有趣的地方,我提醒一下:

★看N列,从上到下,二进制位表示是均匀递增的,且增量都是一个最小二进制位。这不是偶然,正是巧妙设计的结果。观察最大的非规格数,发现恰好就是M全为1,E全为0的情况。于是我们求出最大的非规格数为:上面的公式中,h为M的位数(如范例中为3)。注意,公式等号右边的第一项同时又是最小规格数的值(如范例中为8/512);第二项则正是最小非规格数的值(如范例中为1/512)即该浮点数能表示的最小正数。

★看m列,规格化数都是1+x的形式,这个1正是隐含位1;而非规格化数隐含位为0,所以没有"1+"。

★看n列,非规格化数从上到下的增量都是1/512,且过渡到规格化数时,增量是平滑的,依旧是1/512。这正是非规格化数中e等于(1-bias)而不是(-bias)的缘故,也是巧妙设计的结果。再继续往下看,发现增量值逐渐增大。可见,浮点数的取值范围不是均匀的。

六、实战

我们用一小段汇编来测试一下,浮点数在内存中是如何表示的。测试环境:GentooLinux2006.0/GNUassemblerversion2.16.1/GNUgdb6.4/AMDXP1600+。如下所示

代码:

~/coding/assemble$

gdb

(gdb)list

1

.section.data

2

f1:

3

.float

5

4

f2:

5

.float

0.1

6

.section.text

7

.global_start

8

_start:

9

nop

10

(gdb)x/f&f1

0x80490a4<f1>:

5

(gdb)x/xw&f10x80490a4<f1>:

0x40a00000

(gdb)x/f&f20x80490a8<f2>:

0.100000001

(gdb)x/xw&f20x80490a8<f2>:

0x3dcccccd

(gdb)从上面的gdb命令结果可以看出,浮点数5被表示为0x40a00000,二进制形式为(0100000010100000...00000000)。红色数字为E,可以看出|E|=129>0,则e=129-bias=129-127=2;蓝色数字为M,且|E|>0,说明是规格化数,则m=|1.M|=|1.01000..000|=1.25;由n的计算公式可以求得n=(-1)^0*1.25*2^2

=5,结果被验证了。

同样,你也可以验证一下十进制浮点数0.1的二进制形式是否正确,你会发现,0.1不能表示为有限个二进制位,因此在内存中的表示是舍入(rounding)以后的结果,即0x3dcccccd,十进制为0.100000001,误差0.000000001由此产生了。

七、未完成

关于浮点数,还有很多东西(比如舍入误差、除零异常等等)值得我们深入探讨,但已经无法在此继续。这篇文章的目的仅在初步解释IEEE标准754对浮点数的规定以及一些奇妙的地方。写这篇文章花掉了我整天的时间,但也使我彻底记住了以前让我胆怯的东西──最重要的是,希望这篇文章对大家有点用处,也算我为计算机科学基础理论版以及L做的一点贡献。

参考书目:

①:RandallHyde,TheArtofAssemblyLanguage,Vol.1,4.2.1

②:RandalE.Bryant,DavidR.O’Hallaron,ComputerSystemsAProgrammer’sPerspective(BetaDraft),PartⅠ,Chapt.Ⅱ,2.4

③:

R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论