版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形 B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴 D.圆的对称中心是它的圆心2.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)3.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为()A. B. C. D.4.下列四个数中是负数的是()A.1 B.﹣(﹣1) C.﹣1 D.|﹣1|5.如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为()A.40° B.50° C.80° D.100°6.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A. B. C. D.7.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=338.如图,线段CD两个端点的坐标分别为C(4,4)、D(6,2),以原点O为位似中心,在第一象限内将线段CD缩小为线段AB,若点B的坐标为(3,1),则点A的坐标为()A.(0,3) B.(1,2) C.(2,2) D.(2,1)9.对于二次函数y=2(x﹣1)2﹣3,下列说法正确的是()A.图象开口向下B.图象和y轴交点的纵坐标为﹣3C.x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣110.如果两个相似三角形的面积比是1:4,那么它们的周长比是A.1:16 B.1:6 C.1:4 D.1:211.如图,抛物线与轴交于点,对称轴为,则下列结论中正确的是()A.B.当时,随的增大而增大C.D.是一元二次方程的一个根12.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.2二、填空题(每题4分,共24分)13.已知正方形ABCD的对角线长为8cm,则正方形ABCD的面积为_____cm1.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.15.圆锥侧面积为32πcm2,底面半径为4cm,则圆锥的母线长为____cm.16.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.17.如果一元二次方程经过配方后,得,那么a=________.18.若3a=4b(b≠0),则=_____.三、解答题(共78分)19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.20.(8分)如图,中,,点是延长线上一点,平面上一点,连接平分.(1)若,求的度数;(2)若,求证:21.(8分)已知关于的方程的一个实数根是3,求另一根及的值.22.(10分)如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.23.(10分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.24.(10分)如图,抛物线y=﹣x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=1.求抛物线的顶点坐标.25.(12分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?26.某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x元,那么销售量表示为千克,涨价后每千克利润为元(用含x的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?
参考答案一、选择题(每题4分,共48分)1、C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大2、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,-4),
故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.3、D【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.4、C【解析】大于0的是正数,小于0的是负数,据此进行求解即可.【详解】∵1>0,﹣(﹣1)=1>0,|﹣1|=1>0,∴A,B,D都是正数,∵﹣1<0,∴﹣1是负数.故选:C.【点睛】本题主要考查正数的概念,掌握正数大于0,是解题的关键.5、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得∠BOC=2∠A,进而可得答案.【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=50°.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、B【分析】根据从上面看到的图形即为俯视图进一步分析判断即可.【详解】从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.【点睛】本题主要考查了三视图的判断,熟练掌握相关方法是解题关键.7、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.8、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【详解】解:∵在第一象限内将线段CD缩小为线段AB,点B的坐标为(3,1),D(6,2),∴以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∵C(4,4),∴端A点的坐标为:(2,2).故选:C.【点睛】本题考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.9、C【解析】试题分析:A、y=2(x-1)2-3,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x=0时,y=2(0-1)2-3=-1,即图象和y轴的交点的纵坐标为-1,故本选项错误;C、∵对称轴是直线x=1,开口向上,∴当x<1时,y随x的增大而减少,故本选项正确;C、图象的对称轴是直线x=1,故本选项错误.故选:C.点睛:本题考查了二次函数的图象和性质的应用,主要考查学生的观察能力和理解能力,用了数形结合思想.10、D【解析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可.【详解】解:两个相似三角形的面积比是1:4,两个相似三角形的相似比是1:2,两个相似三角形的周长比是1:2,故选:D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.11、D【解析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【详解】A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选:D.【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.12、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.二、填空题(每题4分,共24分)13、31【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.【详解】解:∵四边形ABCD为正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面积=×AC×BD=31cm1,故答案为:31.【点睛】本题考查了求解菱形的面积,属于简单题,熟悉求解菱形面积的特殊方法是解题关键.14、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.15、8【分析】根据扇形的面积公式计算即可.【详解】设圆锥的母线长为,则:,解得:,故答案为:.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.16、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.17、-6【解析】∵,∴,∴a=-6.18、【分析】依据3a=4b,即可得到a=b,代入代数式进行计算即可.【详解】解:∵3a=4b,∴a=b,∴===.故答案为:.【点睛】本题主要考查了比例的性质,求出a=b是解题的关键.三、解答题(共78分)19、(1)见解析;(2)π.【分析】(1)分别作出点、绕点按顺时针方向旋转得到的对应点,再顺次连接可得;(2)根据扇形的面积公式列式计算可得.【详解】(1)解:如图所示:△AB′C′即为所求(2)解:∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π【点睛】本题主要考查作图以及旋转变换,解题的关键是根据旋转的性质作出变换后的对应点及扇形的面积公式.20、(1);(2)详见解析【分析】(1)根据等腰三角形的性质及角平分线的性质证得∠A=∠BCE,再利用角的和差关系及外角性质可证得∠ABC=∠DCE,从而得到结果;(2)根据∠ABC=∠DBE可证得∠ABD=∠CBE,再结合(1)利用ASA可证明与全等,从而得到结论.【详解】解:(1),,又平分,,,又,,;(2)由(1)知,,,即,在与中,,≌(ASA),.【点睛】本题考查了等腰三角形的性质,角平分线的性质,外角性质,全等三角形的判定与性质,熟记性质定理是解题关键.21、,另一根为4.【分析】把代入方程求出m的值,再把代入原方程即可求解.【详解】解:把代入方程,得,解得,把代入原方程,得,解得,.所以另一根为4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知方程的解的定义及方程的解法.22、(1)m=-12;(2)【分析】(1)根据矩形的性质求出点E的坐标,根据待定系数法即可得到答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得BF的长,可得点F的坐标,根据待定系数法,可得m的值,可得答案.【详解】(1)∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=8,∠D=∠DCB=90°,∵点B坐标为(-6,0),E为CD中点,∴E(-3,4),∵函数图象过E点,∴m=-34=-12;(2)∵∠D=90°,AD=3,DE=CD=4,∴AE=5,∵AF-AE=2,∴AF=7,∴BF=1,设点F(x,1),则点E(x+3,4),∵函数图象过点E、F,∴x=4(x+3),解得x=-4,∴F(-4,1),∴m=-4,∴反比例函数的表达式是.【点睛】此题考查待定系数法求反比例函数的解析式,勾股定理,线段中点的特点,矩形的性质,(2)中可以设点E、F中一个点的坐标,表示出另一个点的坐标,由两点在同一个函数图象上可得到等式求出函数解析式,注意解题方法的积累.23、不需要采取紧急措施,理由详见解析.【分析】连接OA′,OA.设圆的半径是R,则ON=R−4,OM=R−1.根据垂径定理求得AM的长,在直角三角形AOM中,根据勾股定理求得R的值,在直角三角形A′ON中,根据勾股定理求得A′N的值,再根据垂径定理求得A′B′的长,从而作出判断.【详解】设圆弧所在圆的圆心为,连结,,如图所示设半径为则由垂径定理可知,∵,∴,且在中,由勾股定理可得即,解得∴在中,由勾股定理可得∴∴不需要采取紧急措施.【点睛】此类题综合运用了勾股定理和垂径定理,解题的关键是熟知垂径定理的应用.24、(﹣1,9)【分析】先写出A、B点的坐标,然后利用交点式写出抛物线解析式,再利用配方法得到抛物线的顶点坐标.【详解】解:∵OA=2OB=1,∴B(2,0),A(﹣1,0),∴抛物线解析式为y=﹣(x+1)(x﹣2),即y=﹣x2﹣2x+8,∵y=﹣(x+1)2+9,∴抛物线的顶点坐标为(﹣1,9).【点睛】本题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 指纹锁招标文件交换解读3篇
- 教育机构认证合同3篇
- 文明市民停车文明的不乱停3篇
- 安徽餐饮业劳动合同模板3篇
- 推广用品选购合同3篇
- 出行业合同管理策略
- 医疗科研合作合同准则
- 制造业合同存档查阅指南
- 城市公园给水设施建设工程合同
- 建材生产钢板租赁协议
- 箱变平台吊装焊接施工方案
- TRIZ-2003矛盾矩阵表(重新整理)
- 安全生产规章制度和岗位操作规程的目录清单及内容(无仓储经营单位)
- 大树的故事 单元作业设计
- 2023-2024学年凉山彝族自治州六年级数学第一学期期末质量跟踪监视试题含答案
- 3~6岁儿童学习与发展指南(表格形式)
- 2023~2023年压缩空气系统质量回顾
- 新版三体系管理手册(过程方法)
- 学校巡课查课记录总结(13篇)
- 2023年高考地理浙江卷试题及答案
- 污水处理厂电气工程通用技术要求
评论
0/150
提交评论