版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新人教版九年级数学(下册)第二十八章
§28.2解直角三角形(3)用数学视觉观察世界新人教版九年级数学(下册)第二十八章
§28.2解直角三1在直角三角形中,除直角外,由已知两元素求其余未知元素的过程叫解直角三角形.1.解直角三角形(1)三边之间的关系:a2+b2=c2(勾股定理);2.解直角三角形的依据(2)两锐角之间的关系:∠A+∠B=90º;(3)边角之间的关系:ACBabctanA=absinA=accosA=bc知识回顾(必有一边)在直角三角形中,除直角外,由已知两元素2
温故而知新ABC┌如图,Rt△ABC中,∠C=90°,(1)若∠A=30°,BC=3,则AC=(2)若∠B=60°,AC=3,则BC=(3)若∠A=α°,AC=3,则BC=(4)若∠A=α°,BC=m,则AC=温故而知新ABC┌如图,Rt△ABC中,∠C=903指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30°点B在点O的南偏西45°(西南方向)30°45°BOA东西北南方位角介绍:指南或指北的方向线与目标方向线构成小于900的角,叫做方位角4例1.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)60°30°PBCAMN例1.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔5例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF60°1230°M例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪6BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF=x,AD=2x则在Rt△ADF中,根据勾股定理在Rt△ABF中,解得x=610.4>8没有触礁危险30°60°BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F7修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i,即i=.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作a,有i==tana.
显然,坡度越大,坡角a就越大,坡面就越陡.修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.8例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝顶宽AD和斜坡AB的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.5解:(1)在Rt△AFB中,∠AFB=90°在Rt△CDE中,∠CED=90°例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是9利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.利用解直角三角形的知识解决实际问题的1.将实际问题抽象为数学10达标检测达标检测11A1、如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()海里.海里C.7海里D.14海里DA1、如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°122、如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,∠ADC=1350.(1)求坡角∠ABC的大小;(2)如果坝长100m,那么修建这个大坝共需多少土石方(结果精确到0.01m3).咋办先构造直角三角形!ABCD2、如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡133、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图12所示的直角坐标系.x/kmy/km北东AOBC图123、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为1419.4.6
如图一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°.求路基下底的宽.1.认清图形中的有关线段;2.分析辅助线的作法;3.坡角在解题中的作用;4.探索解题过程.练习19.4.6如图一段路基的横断面是梯形,高为4米,15解作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知
DE=CF=4.2(米),CD=EF=12.51(米).在Rt△ADE中,因为所以
在Rt△BCF中,同理可得因此AB=AE+EF+BF≈6.72+12.51+7.90≈27.13(米).答:路基下底的宽约为27.13米.解作DE⊥AB,CF⊥AB,垂足分别为E、162.01:2.51:2BCADEF探究题如图,沿水库拦水坝的背水坡将坝面加宽两米,坡度由原来的1:2改成1:2.5,已知原背水坡长BD=13.4米,求:(1)原背水坡的坡角和加宽后的背水坡的坡角;(2)加宽后水坝的横截面面积增加了多少?(精确到0.01)2.01:2.51:2BCADEF探如图,沿水库拦水171.在解直角三角形及应用时经常接触到的一些概念(方位角;坡度、坡角等)
2.实际问题向数学模型的转化(解直角三角形)知识小结1.在解直角三角形及应用时经常接触到的一些18归纳利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.归纳利用解直角三角形的知识解决实际问题的一般过程是:19新人教版九年级数学(下册)第二十八章
§28.2解直角三角形(3)用数学视觉观察世界新人教版九年级数学(下册)第二十八章
§28.2解直角三20在直角三角形中,除直角外,由已知两元素求其余未知元素的过程叫解直角三角形.1.解直角三角形(1)三边之间的关系:a2+b2=c2(勾股定理);2.解直角三角形的依据(2)两锐角之间的关系:∠A+∠B=90º;(3)边角之间的关系:ACBabctanA=absinA=accosA=bc知识回顾(必有一边)在直角三角形中,除直角外,由已知两元素21
温故而知新ABC┌如图,Rt△ABC中,∠C=90°,(1)若∠A=30°,BC=3,则AC=(2)若∠B=60°,AC=3,则BC=(3)若∠A=α°,AC=3,则BC=(4)若∠A=α°,BC=m,则AC=温故而知新ABC┌如图,Rt△ABC中,∠C=9022指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30°点B在点O的南偏西45°(西南方向)30°45°BOA东西北南方位角介绍:指南或指北的方向线与目标方向线构成小于900的角,叫做方位角23例1.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)60°30°PBCAMN例1.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔24例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF60°1230°M例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪25BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF=x,AD=2x则在Rt△ADF中,根据勾股定理在Rt△ABF中,解得x=610.4>8没有触礁危险30°60°BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F26修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i,即i=.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作a,有i==tana.
显然,坡度越大,坡角a就越大,坡面就越陡.修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.27例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝顶宽AD和斜坡AB的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.5解:(1)在Rt△AFB中,∠AFB=90°在Rt△CDE中,∠CED=90°例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是28利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.利用解直角三角形的知识解决实际问题的1.将实际问题抽象为数学29达标检测达标检测30A1、如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()海里.海里C.7海里D.14海里DA1、如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°312、如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,∠ADC=1350.(1)求坡角∠ABC的大小;(2)如果坝长100m,那么修建这个大坝共需多少土石方(结果精确到0.01m3).咋办先构造直角三角形!ABCD2、如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡323、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图12所示的直角坐标系.x/kmy/km北东AOBC图123、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为3319.4.6
如图一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°.求路基下底的宽.1.认清图形中的有关线段;2.分析辅助线的作法;3.坡角在解题中的作用;4.探索解题过程.练习19.4.6如图一段路基的横断面是梯形,高为4米,34解作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知
DE=CF=4.2(米),CD=EF=12.51(米).在Rt△ADE中,因为所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯用齿轮传动装置项目运营指导方案
- 复写本文具产业链招商引资的调研报告
- 安全剃刀产业链招商引资的调研报告
- 出租鞋行业经营分析报告
- 光学冷加工设备产品供应链分析
- 农村有机农业行业相关项目经营管理报告
- 企业风险保险行业市场调研分析报告
- 竹笛商业机会挖掘与战略布局策略研究报告
- 农业作物病害化学防治行业营销策略方案
- 宗教教育行业经营分析报告
- 部编人教版《道德与法治》六年级上册第6课《人大代表为人民》课件
- 《汽车数据安全管理若干规定(试行)》解读完整课件
- 化工设备塔设备3
- 《高中化学课程标准》学习心得
- 专八阅读训练10篇(含答案)
- 办公室工作务虚会汇报材料
- 温县电子商务公共服务中心PPT课件
- 招商银行在职证明
- 工程机械设计中轻量化技术的应用
- 机械工程与自动化的关系探讨
- 毕业设计液压剪切机液压系统设计
评论
0/150
提交评论