下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中最大的一项为54,又它的前2n项和为6560,求a和q.解由Sn=80,S2n=6560,故q≠1∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an.∴an=aqn-1=54 ④将③代入①化简得a=q-1 ⑤由⑤,⑥联立方程组解得a=2,q=3证∵Sn=a1+a1q+a1q2+…+a1qn-1S2n=Sn+(a1qn+a1qn+1+…+a1q2n-1)=Sn+qn(a1+a1q+…+a1qn-1)=Sn+qnSn=Sn(1+qn)类似地,可得S3n=Sn(1+qn+q2n)说明此题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与Sn的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,那么解法巧.【例3】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数.分析设等比数列为{an},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q.解设项数为2n(n∈N*),因为a1=1,由可得q≠1.即公比为2,项数为8.说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法到达降次的目的.【例4】选择题:在等比数列{an}中,对任意正整数n,有Sn=2n[]解D.∵a1=S1=1,an=Sn-Sn-1=2n-1∴an=2n-1∴bn=(an)2=(2n-1)2=22n-2=4n-1【例5】设0<V<1,m为正整数,求证:(2m+1)Vm(1-V)<1-V2m+1分析直接作,不好下手.变形:右边分式的外形,使我们联想到等比数列求和公式,于是有:(2m+1)Vm<1+V+V2+…+V2m发现左边有(2m+1)个Vm,右边有(2m+1)项,变形:Vm+Vm+…+Vm<1+V+V2+…+V2m.显然不能左右各取一项比拟其大小,试用“二对二〞法,即左边选两项与右边的两项相比拟.鉴于左、右两边都具有“距首末等远的任意两项指数之和均相等〞的特点,想到以如下方式比拟:Vm+Vm<1+V2m,Vm+Vm<V+V2m-1,…,Vm+Vm<Vm-1+Vm+1,Vm=Vm.即2Vm<1+V2m,2Vm<V+V2m-1,….根据“两个正数的算术平均值大于等于其几何平均值〞,这些式子显然成立.(具体证法从略).说明此题最大的特点是解题过程中需要屡次用到“逆向思考〞:C,B<D,等等.善于进行逆向思考,是对知识熟练掌握的一种表现,同时也是一种重要的思维能力,平时应注意训练.【例6】数列{an}是等比数列,其中Sn=48,S2n=60,求S3n.解法一利用等比数列的前n项和公式假设q=1,那么Sn=na1,即na1=48,2na1=96≠60,所以q≠1=Sn(1+qn+q2n)解法二利用等比数列的性质:Sn,S2n-Sn,S3n-S2n仍成等比数列∴(60-48)2=48·(S3n-60)∴S3n=63.解法三取特殊值法取n=1,那么S1=a1=48,S2n=S2=a1+a2=60∴a2=12∵{an}为等比数列S3n=S3=a1+a2+a3=63【例7】数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n∈N*),a1=1(1)设bn=an+1-2an(n∈N*),求证:数列{bn}是等比数列;解(1)∵Sn+1=4an+2Sn+2=4an+1+2两式相减,得Sn+2-Sn+1=4an+1=4an(n∈N*)即:an+2=4an+1-4an变形,得an+2-2an+1=2(an+1-2an)∵bn=an+1-2an(n∈N*)∴bn+1=2bn由此可知,数列{bn}是公比为2的等比数列.由S2=a1+a2=4a1+2,a1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年船只租赁运输合同3篇
- 2024年铁路物流合作合同范本下载版B版
- 2025年吊顶工程新型材料研发与市场应用推广合同2篇
- 2025版拌合站工程分包质量监督合同3篇
- 2025版防盗门及安全锁具定制生产销售合同2篇
- 2025版互联网企业股权激励与员工持股计划合同3篇
- 二零二五年农业科技园区建设与管理合同3篇
- 2025版室内外一体化装修工程劳务承包合同书3篇
- 2025版防盗门产品研发与市场推广合同
- 2024年度大件运输配送服务合同模板发布3篇
- 系统架构图课件ppt
- 矿物绝缘电缆电缆比较
- 污水雨水管道施工方案
- GB/T 18601-2001天然花岗石建筑板材
- GA/T 1133-2014基于视频图像的车辆行驶速度技术鉴定
- 食品用酶制剂相关法律法规及安全标准
- 研发费用加计扣除与高新技术企业政策解析课件
- ANSYS有限元技术分析优化
- 模具专业英语完整版电子课件
- 水运工程交工质量核验申请书、意见、内容表和竣工质量鉴定申请、报告、复测内容
- 乳腺疾病诊疗规范诊疗指南2022版
评论
0/150
提交评论