




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.62.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若函数有且只有4个不同的零点,则实数的取值范围是()A. B. C. D.4.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.5.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点6.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.47.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.8.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.9.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.11.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.43212.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是______.14.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.15.实数,满足,如果目标函数的最小值为,则的最小值为_______.16.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?18.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)19.(12分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.20.(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.21.(12分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.2、B【解析】
由,可得,解出即可判断出结论.【详解】解:因为,且.,解得.是的必要不充分条件.故选:.【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3、B【解析】
由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.4、B【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、A【解析】
根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.6、C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.8、C【解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.9、A【解析】
根据对数的运算分别从充分性和必要性去证明即可.【详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.10、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.11、C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.12、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出点坐标,由于直线与直线垂直,得出直线的斜率为,再由点斜式写出直线的方程.【详解】由于直线可看成直线先绕点逆时针方向旋转角,再继续旋转角得到,则直线与直线垂直,即直线的斜率为所以直线的方程为,即故答案为:【点睛】本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.14、【解析】
首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案.【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,,解得.故答案为.【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目.15、【解析】
作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.16、【解析】
由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.18、(Ⅰ)分布列见解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)当P(a≤X≤b)取到最大值时,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前两问的结果,判断至少增加2人.【详解】(Ⅰ)X的取值为:9,12,15,18,24;,,,,,X的分布列为:X912151824P故X的数学期望;(Ⅱ)当P(a≤X≤b)取到最大值时,a,b的值可能为:,或,或.经计算,,,所以P(a≤X≤b)的最大值为.(Ⅲ)至少增加2人.【点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.19、(1)1;(2)证明见解析.【解析】
(1)将不等式化为,求解得出,根据解集确定正数的值;(2)利用基本不等式以及不等式的性质,得出,,,三式相加,即可得证.【详解】(1)解:不等式,即不等式∴,而,于是依题意得(2)证明:由(1)知,原不等式可化为∵,∴,同理,三式相加得,当且仅当时取等号综上.【点睛】本题主要考查了求绝对值不等式中参数的范围以及基本不等式的应用,属于中档题.20、(1)见解析(2)见解析【解析】
(1)求出,分别以当,,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.【详解】解析:(1),,当时,,单调递减,,,此时有1个零点;当时,无零点;当时,由得,由得,∴在单调递减,在单调递增,∴在处取得最小值,若,则,此时没有零点;若,则,此时有1个零点;若,则,,求导易得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年一级建造师经济章节题库及答案
- 山东省枣庄达标名校2025届初三下学期5月阶段性教学质量检测试题英语试题试卷含答案
- 电子科技大学中山学院《临床医学概论Ⅱ》2023-2024学年第一学期期末试卷
- 内蒙古体育职业学院《钢琴与即兴伴奏二》2023-2024学年第二学期期末试卷
- 佛山科学技术学院《矢量图设计》2023-2024学年第二学期期末试卷
- 宁波幼儿师范高等专科学校《BIM建筑工程计量与计价》2023-2024学年第二学期期末试卷
- 山东商业职业技术学院《基础俄语(1)》2023-2024学年第二学期期末试卷
- 广东交通职业技术学院《中国现代文学作家解读》2023-2024学年第一学期期末试卷
- 长治职业技术学院《电磁场与天线B》2023-2024学年第二学期期末试卷
- 益阳医学高等专科学校《机械系统设计》2023-2024学年第二学期期末试卷
- 2024年新人教版四年级数学下册《第6单元第2课时 小数加减法》教学课件
- 国开2024年《数据库运维》形考1-3
- 劳动合同(模版)4篇
- 少儿美术课件国家宝藏系列《鸱吻》
- 盐城射阳农村商业银行招聘真题
- 药物研发监管的国际协调
- 2023年宁夏地区中考满分作文《学习可以收获生活》
- 直播电商策划与运营 课件 项目1 认识直播电商、项目2 主播人设打造与能力塑造
- 生猪屠宰兽医卫生检验人员理论考试题及答案
- 四川省2024年全国高中数学联赛(预赛)试题(解析版)
- 中国邮政招聘笔试题库
评论
0/150
提交评论