




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题课《构造基本图形一一等腰三角形》一、教学目标知识与能力:.探究构造等腰三角形的方法,能通过作垂线和平行线来构造等腰三角形。.能灵活的运用等腰三角形的性质进行有关说理并解决具体的数学问题。过程与方法:.运用类比研究问题的方法,提高分析问题和解决问题的能力。.培养学生逻辑推理能力和创造性思维能力。.在自主探究中理解基本图形,收获探究方法,充分体现观察、实验、猜想、论证、应用的研究几何图形问题的全过程。情感、态度、价值观:.认识到观察、实验、类比可以获得数学猜想,数学活动赋予探索、充满挑战。.引导学生面对困难时要积极对待,冷静思考,尽力寻求方法解决问题。二、教学重点学生探索构造等腰三角形。三、教学难点对构造的基本图形——等腰三角形方法的归纳。四、教学手段利用多媒体手段,直观演示图形。五、教学过程(一)导入新知在轴对称一章里,我们接触了等腰三角形,如图等腰三角形△ABC,它有什么性质和判定方法?等腰三角形:等边对等角,等角对等边及底边上的高线、中线、顶角的角平分线重合。等腰三角形具有这么特殊的性质,提供了“边与边、角和角及边和角的关系”。我们把等腰三角形看作是平面几何中的一个基本图形,在很多问题中,如果有等腰三角形,我们要把它能从复杂图形中找出来;如果问题中没有有时我们还需要想办法构造出来,本节课我们就来探究如何构造等腰三角形。我们来看这样一个问题:(展示课件)(学生活动)问题1:利用圆规或三角板,在角上添加线构造等腰三角形方法:有多种方法,分别把NO作为底角和顶角来构造。问题2:利用角平分线的条件,过点P作一条线段构造等腰三角形设计说明:这个环节由学生自己动手画图操作,发散学生思维,寻求多种方法解决问题,同时对每一种画法,说明理由。在探索过程中,学生可能会给出多种构造方法,比如:.以顶点O为圆心,OP长为半径作弧,交角的两边于点A、B,连结AB,则4OAB为等腰三角形。.以点P为圆心,OP长为半径作弧,交角的一边于点A,连结AP,则△OAP为等腰三角形。.过P点分别向角的两边引垂线段,垂足点A、B,连结AB,则4OAB为等腰三角形。对于作平行线的方法学生可能比较难考虑到,此时给出适当的引导:我们知道角平分线可得两角等,而等腰三角形也有两角等,那么我们能不能想个办法把角平分线得到的这对等角转移到一个三角形中呢?(二)在封闭的三角形内研究基本图形的构造刚才,我们利用角和角的平分线,过一点通过添加线来构造等腰三角形,我们探索了很多的方法,下面我们把这个角平分线的条件放到一个三角形里,看是否还存在我们所研究的基本图形一一等腰三角形。问题3:在^ABC中,BD平分/ABC,P是BD上的一点,过点P添加一条线段能构造等腰三角形吗?【设计意图】把角平分线放到一个封闭图形(三角形)中,进一步探究作平行线和垂线来构造等腰三角形的方法。变形:利用多媒体几何画板的优势,改变点相对于三角形的位置关系,观察上面的结论是否发生变化。变化过程:点在三角形内部 点在三角形边上 点在三角形外部。画板演示变化过程:以作平行线为例。
问题4:已知:在^ABC中,BD、CD分别平分/ABC和NACB,请思考过点D添加线段能够造等腰三角形。我们由刚才一条角平分线变成两条角平分线,还可以构造等腰三角形吗?演示一:作平行线就构造的基本图形提出应用:图1:若已知AB=4,AC=5,BC=6你能知道^AEF图1:若已知AB=4,AC=5,BC=6你能知道^AEF的周长吗?图2:若已知AB=4,AC=5,BC=6求4DEF的周长。演示二:做垂线【设计指导】引导、画图、讲解同步进行,师生共同研究。【设计指导】引导、画图、讲解同步进行,师生共同研究。【设计意图】对于下面的问题5和6,教师引导学生自己提出问题。为了更好的理解基本图形,即更好的体现新课程标准中提倡的课堂不要过满,课堂学习
可以有效延伸的课后学习,此两个题目作为思考题留到课下,由学生独立探究完成。问题5:已知在△ABC中,BD平分/ABC,CD平分外角/ACM,请思考过点D添加线段构造等腰三角形。改变角平分线的位置:从两内角平分线变为一内角和一外角平分线。作平行线:(应用:线段EF、BE、FC有什么数量关系?答EF=BE-FC)做垂线:CD分别平分外角/CBE和NBCM,问题6:已知:在^ABC中,BD、请思考过点D如何添加线能构造等腰三角形?
【设计意图】改变角平分线的位置,由两内角角平分线变为两外角角平分线,通过对图形的变化,使学生更深刻的理解基本图形的构成。(三)课堂小结对比黑板上画出的各种构造等腰三角形的方法。归纳构造方法:作平行线和垂线是利用角等来构造等腰三角形,而其它比如利用角平分线的性质到角两边距离相等或利用圆规画图的方法是直接利用边等来构造等腰三角形,今天我们主要研究利用角等来构造等腰三角形的方法。从知识点和方法上,你有什么收获?板书:基本图形的构成垂线垂直角平分线女等腰三角形3垂线垂直角平分线女等腰三角形3角平分线平行线平行任一边>等腰三角形(四)基本图形的应用N1=N2,BE±AE于N1=N2,BE±AE于E。【设计意图】此题目较前面的例题有一定的难度,要给学生充分讨论交流的时间,先引导学生寻找基本图形,再从要证明的结论入手,当学生遇到困难时,老师及时引导帮助。分析:延长BE交AC于点M,利用做角平分线的垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同协议光明集团新能源电站建设与运营管理合同
- 肉类副产品在食品工业中的功能性与健康价值考核试卷
- 跨境私募基金有限合伙人合作协议(含知识产权、风险投资与项目评估)
- 2025年中国铋精矿行业市场前景预测及投资价值评估分析报告
- 海外网红IP授权合作合同
- 电池梯次利用与环保产业园区建设合作协议
- 海外健康数据备份及设备租赁合作协议
- 拼多多智能客服机器人定制开发与市场拓展服务合同
- 恐怖剧本改编权独家授权协议
- 薪酬保密与员工职业规划及发展路径管理协议
- 2024CSCO结直肠癌诊疗指南解读
- MOOC 信号与系统-西安电子科技大学 中国大学慕课答案
- 公需科目2023年度数字经济与驱动发展考试题库及答案
- 中学生英才计划面试常见问题
- 压力容器安全风险管控清单(日管控、周排查、月调度)
- 中小学心理健康教育指导纲要
- 婴幼儿尿布性皮炎护理
- 国网兼职培训师培训课件
- 医保药品追溯系统协议
- 幼儿园教师游戏指导经验总结
- 电子元器件的选型与电路设计
评论
0/150
提交评论