福建省福州十八中学2022年九年级数学上册期末监测模拟试题含解析_第1页
福建省福州十八中学2022年九年级数学上册期末监测模拟试题含解析_第2页
福建省福州十八中学2022年九年级数学上册期末监测模拟试题含解析_第3页
福建省福州十八中学2022年九年级数学上册期末监测模拟试题含解析_第4页
福建省福州十八中学2022年九年级数学上册期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如下图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为()A. B. C. D.2.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. B. C. D.3.方程x2-4=0的解是A.x=2 B.x=-2 C.x=±2 D.x=±44.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个 B.1080个 C.1260个 D.1800个5.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. B.C. D.6.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.247.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个8.如图所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35° B.30° C.25° D.20°9.如图,某停车场人口的栏杆,从水平位置AB绕点O旋转到A'B′的位置已知AO=4m,若栏杆的旋转角∠AOA′=50°时,栏杆A端升高的高度是()A. B.4sin50° C. D.4cos50°10.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上二、填空题(每小题3分,共24分)11.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.12.使函数有意义的自变量的取值范围是___________.13.如图,⊙O的半径OC=10cm,直线l⊥OC,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移____________cm时能与⊙O相切.14.已知圆锥的底面半径为3cm,母线长4cm,则它的侧面积为cm1.15.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为___.16.已知m是关于x的方程x2﹣2x﹣4=0的一个根,则2m2﹣4m=_____.17.如图,在中,,,点在边上,,.点是线段上一动点,当半径为的与的一边相切时,的长为____________.18.抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)先将竖直向下平移5个单位长度,再水平向右平移1个单位长度得到,请画出;(2)将绕点顺时针旋转,得,请画出;(3)求线段变换到的过程中扫过区域的面积.20.(6分)如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶_______21.(6分)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.(1)求证:△ABC∽△BDC.(2)若AC=8,BC=6,求△BDC的面积.22.(8分)如图,在四边形ABCD中,AD∥BC,AB⊥BD于点B.已知∠A=45°,∠C=60°,,求AD的长.23.(8分)如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午……,若点,,则点的横坐标为__________.24.(8分)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.25.(10分)数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.数学思考(1)设CD=xcm,点B到OF的距离GB=y①用含x的代数式表示:AD的长是_________cm,BD的长是________cm;②y与x的函数关系式是_____________,自变量x的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.x(6543.532.5210.50y(00.551.21.581.02.4734.295.08②描点:根据表中数值,描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.26.(10分)综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果.旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质.所以充分运用这些性质是在解决有关旋转问题的关健.实践操作:如图1,在Rt△ABC中,∠B=90°,BC=2AB=12,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.问题解决:(1)①当α=0°时,=;②当α=180°时,=.(2)试判断:当0°≤a<360°时,的大小有无变化?请仅就图2的情形给出证明.问题再探:(3)当△EDC旋转至A,D,E三点共线时,求得线段BD的长为.

参考答案一、选择题(每小题3分,共30分)1、C【解析】两对对应点的连线的交点即为位似中心,连接OD、AC,交点为(2,2,)即位似中心为(2,2,);k=OA:CD=6:3=2,故选C.2、B【解析】试题解析:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB=.故选B.3、C【分析】方程变形为x1=4,再把方程两边直接开方得到x=±1.【详解】解:x1=4,∴x=±1.故选C.4、C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【详解】估计本周全班同学各家总共丢弃塑料袋的数量为(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.5、D【解析】第一个月是560,第二个月是560(1+x),第三月是560(1+x)2,所以第一季度总计560+560(1+x)+560(1+x)2=1850,选D.6、C【分析】根据用频率估计概率可知:摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.7、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【点睛】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.8、C【解析】试题分析:CD∥AB,∠D=50°则∠BOD=50°.则∠DOA=180°-50°=130°.则OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.选C.考点:平行线性质点评:本题难度较低,主要考查学生对平行线性质及角平分线性质的掌握.9、B【分析】过点A'作AO的垂线,则垂线段为高度h,可知AO=A'O,则高度h=A'O×sin50°,即为答案B.【详解】解:栏杆A端升高的高度=AO•sin∠AOA′=4×sin50°,故选:B.【点睛】本题的考点是特殊三角形的三角函数.方法是熟记特殊三角形的三角函数.10、C【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.二、填空题(每小题3分,共24分)11、140【解析】试题解析::∵∠A=110°

∴∠C=180°-∠A=70°

∴∠BOD=2∠C=140°.12、且【分析】根据二次根式的性质和分式的性质即可得.【详解】由二次根式的性质和分式的性质得解得故答案为:且.【点睛】本题考查了二次根式的性质、分式的性质,二次根式的被开方数为非负数、分式的分母不能为零是常考知识点,需重点掌握.13、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.14、11π【解析】试题分析:圆锥的侧面积公式:圆锥的侧面积底面半径×母线.由题意得它的侧面积.考点:圆锥的侧面积点评:本题属于基础应用题,只需学生熟练掌握圆锥的侧面积公式,即可完成.15、1.【分析】根据概率公式得到,然后利用比例性质求出n即可.【详解】根据题意得,解得n=1,经检验:n=1是分式方程的解,故答案为:1.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16、8【分析】根据方程的根的定义,将代入方程得,仔细观察可以发现,要求的代数式分解因式可变形为,将方程二次项与一次项整体代入即可解答.【详解】解:将代入方程可得,,.【点睛】本题考查了一元二次方程根的定义和代数求值,运用整体代入的数学思想可以方便解答。17、或或【分析】根据勾股定理得到AB、AD的值,再分3种情况根据相似三角形性质来求AP的值.【详解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB²=AC²+BC²AB=①当⊙P与BC相切时,设切点为E,连结PE,则PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②当⊙P与AC相切时,设切点为F,连结PF,则PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③当⊙P与BC相切时,设切点为G,连结PG,则PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案为:或或5【点睛】本题考查了利用相似三角形的性质对应边成比例来证明三角形边的长.注意分清对应边,不要错位.18、y=﹣+1【分析】直接根据平移规律作答即可.【详解】解:抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为y=﹣x2+1,故答案为:y=﹣x2+1.【点睛】本题考查了函数图像的平移.要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.三、解答题(共66分)19、(1)答案见解析;(2)答案见解析;(3)【分析】(1)依据平移的方向和距离,即可得到;(2)依据旋转的方向和距离,即可得到;(3)依据扇形的面积计算公式,即可得到线段B1C1变换到B2C1的过程中扫过区域的面积.【详解】(1)如图为所求,(2)如图为所求,(3)B1C1=∴线段B1C1变换到B2C1的过程中扫过区域的面积为:.【点睛】本题考查了作图−旋转变换和平移变换及扇形面积求解,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、2.4.【解析】试题解析:如图所示:AC=130米,BC=50米,则米,则坡比故答案为:21、(1)详见解析;(2)【分析】(1)由AB是⊙O的直径,可得∠ACB=∠BCD=90°,又由BD是⊙O的切线,根据同角的余角相等,可得∠A=∠CBD,利用有两角对应相等的三角形相似,即可证得△ABC∽△BDC;(2)由AC=8,BC=6,可求得△ABC的面积,又由△ABC∽△BDC,根据相似三角形的面积比等于相似比的平方,即可求得△BDC的面积.【详解】(1)∵BD是⊙O的切线,∴AB⊥BD,∴∠ABD=90°.∴∠A+∠D=90°.∵AB是⊙O的直径,∴∠ACB=∠BCD=90°,∴∠CBD+∠D=90°,∴∠A=∠CBD,∴△ABC∽△BDC;(2)∵△ABC∽△BDC,∴,∵AC=8,BC=6,∴S△ABCAC•BC8×6=24,∴S△BDC=S△ABC24÷()2.【点睛】本题考查了相似三角形的判定与性质、圆周角定理、切线的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.22、.【分析】过点D作DE⊥BC于E,在Rt△CDE中,∠C=60°,,则可求出DE,由已知可推出∠DBE=∠ADB=45°,根据直解三角形的边角关系依次求出BD,AD即可.【详解】过点D作DE⊥BC于E∵在Rt△CDE中,∠C=60°,,∴,∵AB⊥BD,∠A=45°,∴∠ADB=45°.∵AD∥BC,∴∠DBE=∠ADB=45°∴在Rt△DBE中,∠DEB=90°,,∴,又∵在Rt△ABD中,∠ABD=90°,∠A=45°,∴.【点睛】本题考查了解直角三角形的知识,正确作出辅助线是解题的关键.23、【解析】由图形规律可知在X轴上,根据观察的规律即可解题.【详解】因为,,所以0A=,OB=4,所以AB==,所以(10,4),(20,4),(30,4),(10090,4),的横坐标为10090++=10096.【点睛】本题考查图形的变化—旋转,勾股定理,以及由特殊到一般查找规律.24、(1)1;(2)证明见解析【解析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴,即,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴,∴AD∥CB,∴△AFD∽△EFB,∴,∴,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25、(1))(6+x),(6-x),y=6(6-x)6+x,0⩽x⩽6;(2)见解析;(3)①y随着x的增大而减小;②图象关于直线y=x对称;③函数y的取值范围是【解析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点(0,6),(3,2)即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意AC=OA=1∵CD=xcm,∴AD=(6+x)(cm),BD=12-(6+x)=(6-x)(cm),故答案为:(6+x),(6-x).②作BG⊥OF于G.∵OA⊥OF,BG⊥OF,∴BG//OA,∴BG∴y∴y=36-6x故答案为:y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论