版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列运算中,计算结果正确的是()A.a4•a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b2.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为()A. B. C. D.3.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个4.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.5.若分式的值为,则的值为()A. B. C. D.6.若关于x的一元二次方程有实数根,则实数k的取值范围为A.,且 B.,且C. D.7.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°8.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm9.二次函数y=(x+2)2-3的顶点坐标是()A.(﹣2,3) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)10.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是()A.1 B.0 C.﹣1 D.﹣211.在,,,则的值是()A. B. C. D.12.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.14.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.15.若方程的一个根,则的值是__________.16.如果等腰△ABC中,,,那么______.17.计算__________.18.写出一个以-1为一个根的一元二次方程.三、解答题(共78分)19.(8分)如图,正方形的对角线、相交于点,过点作的平行线,过点作的平行线,它们相交于点.求证:四边形是正方形.20.(8分)如图,某中学准备在校园里利用院墙的一段再用米长的篱笆围三面,形成一个矩形花园(院墙长米).(1)设米,则___________米;(2)若矩形花园的面积为平方米,求篱笆的长.21.(8分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.22.(10分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.23.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24.(10分)有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上.点是抛物线上任意一点,且.若恒成立,求m的最小值.25.(12分)如图,抛物线与轴交于点和,与轴交于点顶点为.求抛物线的解析式;求的度数;若点是线段上一个动点,过作轴交抛物线于点,交轴于点,设点的横坐标为.①求线段的最大值;②若是等腰三角形,直接写出的值.26.如图,在平面直角坐标系xOy中,双曲线与直线y=﹣2x+2交于点A(﹣1,a).⑴求k的值;⑵求该双曲线与直线y=﹣2x+2另一个交点B的坐标.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据幂的运算法则即可判断.【详解】A、a4•a=a5,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(a3)2=a6,正确;D、(ab)3=a3b3,故此选项错误;故选C.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.2、A【分析】列举出所有情况,看两位数中是奇数的情况占总情况的多少即可.【详解】解:在0,1,2三个数中任取两个,组成两位数有:12,10,21,20四个,是奇数只有21,所以组成的两位数中是奇数的概率为.故选A.【点睛】数目较少,可用列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.4、B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有,共2个,∴卡片上的数为无理数的概率是.故选B.【点睛】本题考查了无理数的定义及概率的计算.5、A【分析】分式值为零的条件是分子等于零且分母不等于零,据此求解即可.【详解】解:∵分式的值为1,
∴x-2=1且x+4≠1.
解得:x=2.
故选:A.【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.6、A【解析】∵原方程为一元二次方程,且有实数根,∴k-1≠0且△=62-4×(k-1)×3=48-12k≥0,解得k≤4,∴实数k的取值范围为k≤4,且k≠1,故选A.7、C【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.8、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.9、C【分析】根据二次函数的性质直接求解.【详解】解:二次函数y=(x+2)2-3的顶点坐标是(-2,-3).
故选:C.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;抛物线的顶点式为y=a(x-)2+,对称轴为直线x=-,顶点坐标为(-,);抛物线与y轴的交点坐标为(0,c).10、B【分析】根据题意知,,代入数据,即可求解.【详解】由题意知:一元二次方程x2+2x+k=1有两个不相等的实数根,∴解得∴.∴k的最大整数是1.故选B.【点睛】本题主要考查了利用一元二次方程根的情况求参数范围,正确掌握利用一元二次方程根的情况求参数范围的方法是解题的关键.11、B【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【详解】∵在Rt△ABC中,∠C=90,∴∠A+∠B=90,∴sin2A+sin2B=1,sinA>0,∵sinB=,∴sinA==.故选B.【点睛】本题考查互余两角三角函数的关系.12、D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题(每题4分,共24分)13、.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共个数,大于的数有个,(大于);故答案为.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.15、【分析】将m代入方程,再适当变形可得的值.【详解】解:将m代入方程得,即,所以.故答案为:2020.【点睛】本题考查了一元二次方程的代入求值,灵活的进行代数式的变形是解题的关键.16、;【分析】过点作于点,过点作于点,由于,所以,,根据勾股定理以及锐角三角函数的定义可求出的长度.【详解】解:过点作于点,过点作于点,,,,AB=AC=3,BE=EC=1,BC=2,又∵,∴BD=,,∵,∴,故答案为:.【点睛】本题考查解直角三角形,涉及锐角三角函数的定义,需要学生灵活运用所学知识.17、【分析】先把特殊角的三角函数值代入原式,再计算即得答案.【详解】解:原式=.故答案为:.【点睛】本题考查了特殊角的三角函数值,属于基础题型,熟记特殊角的三角函数值、正确计算是关键.18、答案不唯一,如【解析】试题分析:根据一元二次方程的根的定义即可得到结果.答案不唯一,如考点:本题考查的是方程的根的定义点评:解答本题关键的是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.三、解答题(共78分)19、见解析【分析】根据已知条件先证明四边形OBEC是平行四边形,再证明∠BOC=90°,OC=OB即可判定四边形OBEC是正方形.【详解】∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∴,∴四边形是矩形,∵,∴四边形是正方形.【点睛】本题考查正方形的性质和判定,解题的关键是熟练掌握正方形的性质和判定.20、(1);(2)15米【分析】(1)根据题意知道的长度=篱笆总长-列出式子即可;(2)根据(1)中的代数式列出方程,解方程即可.【详解】解:(1),(2)根据题意得方程:,解得:,,当时,(不合题意,舍去),当时,(符合题意).答:花园面积为米时,篱笆长为米.【点睛】本题主要考察列代数式、一元二次方程的应用,注意篱笆只围三面有一面是墙.21、(1)y=x2﹣x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析.【分析】(1)根据题意可以得到C的坐标,然后根据抛物线过点A、C、D可以求得该抛物线的解析式;(2)根据对称轴和图形可以画出相应的图形,然后找到使得四边形EAMN的周长的取得最小值时的点M和点N即可,然后求出直线MN的解析式,然后直线MN与x轴的交点即可解答本题;(3)根据题意作出合适的图形,然后根据平行四边形的性质可知EH=FP,而通过计算看EH和FP是否相等,即可解答本题.【详解】解:(1)∵AE∥x轴,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴点C(4,2),设二次函数解析式为y=ax2+bx+2,∵C(4,2)和D(3,0)在该函数图象上,∴,得,∴该抛物线的解析式为y=x2﹣x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x轴于点M,交线段BC于点N.根据对称与最短路径原理,此时,四边形AMNE周长最小.易知A1(0,﹣2),E1(6,2).设直线A1E1的解析式为y=kx+b,,得,∴直线A1E1的解析式为.当y=0时,x=3,∴点M的坐标为(3,0).∴由勾股定理得AM=,ME1=,∴四边形EAMN周长的最小值为AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:过点F作EH的平行线,交抛物线于点P.易得直线OE的解析式为y=x,∵抛物线的解析式为y=x2﹣x+2=,∴抛物线的顶点F的坐标为(2,﹣),设直线FP的解析式为y=x+b,将点F代入,得,∴直线FP的解析式为.,解得或,∴点P的坐标为(,),FP=×(﹣2)=,,解得,或,∵点H是直线y=x与抛物线左侧的交点,∴点H的坐标为(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴点P不符合要求,∴不存在点P,使得四边形EHFP为平行四边形.【点睛】本题主要考察二次函数综合题,解题关键是得到C的坐标,然后根据抛物线过点A、C、D求得抛物线的解析式.22、图形见解析,概率为【分析】根据题意列出树形图,再利用概率公式计算即可.【详解】根据题意,列表如下:共有9种结果,并且它们出现的可能性相等,符合题意的结果有5种,.【点睛】本题考查概率的计算,关键在于熟悉树形图和概率公式.23、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.24、(1)见解析;(2)或;(3)【分析】(1)由BD平分∠ABC推出∠ABD=∠CBD,又AB∥BC,所以∠ADB=∠CBD,所以∠ABD=∠ADB,即AB=AD,所以四边形ABCD为“和睦四边形”;(2)分别求出AQ、AP、BQ、OP、OB的值,连接PQ,因为,所以,所以,根据勾股定理求出PQ,再分类讨论t的值即可;(3)表示出点的坐标,由可得,因为得出所以,即,由①②的方程,且解出a、b的值,求出抛物线的解析式为,因为P在抛物线上,将P代入抛物线得,,可得当,又因为,所以,即,得出m的最小值为;【详解】解:(1),,,,,四边形ABCD为“和睦四边形”;(2)由题意得:AQ=5t,AP=4t,BQ=10-5t,OP=8-4t,OB=6,连接PQ,,,综上:;(3)由题意得:,由①②,且,得,,【点睛】本题是二次函数的综合性题目,给了新型定义,解题的关键是审清题目的意思.25、(1)y=x2-4x+2,(2)90°,(2)①,②m=2或m=或m=1.【分析】(1)将点B,C代入抛物线的解析式中,利用待定系数法即可得出答案;(2)先求出点D的坐标,然后利用OB=OC,得出∠CBO=45°,过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版智能便利店技术授权及门店运营合同4篇
- 个人财务规划服务合同2024
- 2025年水电设施智能化改造安装合同4篇
- 二零二五版光盘复制与创意设计及制作合同3篇
- 三方协作2024年劳务分包协议模板版A版
- 2025版民爆物品安全评估与风险管理合同模板4篇
- 2024通信工程智能化设备采购及安装服务协议3篇
- 2025年度脚手架安装与拆卸工程承包合同范本4篇
- 校园心理剧在学生群体中的运用
- 小学科学课程资源的创新利用与教育效果
- 2025年度房地产权证办理委托代理合同典范3篇
- 柴油垫资合同模板
- 湖北省五市州2023-2024学年高一下学期期末联考数学试题
- 城市作战案例研究报告
- 【正版授权】 ISO 12803:1997 EN Representative sampling of plutonium nitrate solutions for determination of plutonium concentration
- 道德经全文及注释
- 2024中考考前地理冲刺卷及答案(含答题卡)
- 多子女赡养老人协议书范文
- 彩票市场销售计划书
- 支付行业反洗钱与反恐怖融资
- 基础设施绿色施工技术研究
评论
0/150
提交评论