版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,下列条件中,能判定的是()A. B. C. D.2.如图,DE是的中位线,则与的面积的比是A.1:2B.1:3C.1:4D.1:93.在半径为1的⊙O中,弦AB的长为,则弦AB所对的圆周角的度数为()A.45° B.60° C.45°或135° D.60°或120°4.如图,在△ABC中,∠C=90°,cosA=,AB=10,AC的长是()A.3 B.6 C.9 D.125.如图,△ABC中,点D,E在边AB,AC上,DE∥BC,△ADE与△ABC的周长比为2∶5,则AD∶DB为()A.2∶5 B.4∶25 C.2∶3 D.5∶26.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.37.如图,在⊙O中,弦AB=6,半径OC⊥AB于P,且P为OC的中点,则AC的长是()A.2 B.3 C.4 D.28.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(-2,2) B.(-2,4) C.(-2,2) D.(2,2)9.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=-1C.直线x=-2 D.直线x=210.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.A.3 B.3.5 C.3或4 D.3或3.5二、填空题(每小题3分,共24分)11.在实数范围内分解因式:-1+9a4=____________________。12.如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.13.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.14.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________15.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).16.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.17.一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在左右,则m的值约为______.18.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF的最小值是_____.三、解答题(共66分)19.(10分)如图,直线y=1x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=1.(1)求H点的坐标及k的值;(1)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.20.(6分)如图,中,,是斜边上一个动点,以为直径作交于点,与的另一个交点,连接.(1)当时,①若,求的度数;②求证;(2)当,时,是否存在点,使得是等腰三角形,若存在,求出所有符合条件的的长.21.(6分)如图,点F为正方形ABCD内一点,△BFC绕点B逆时针旋转后与△BEA重合(1)求△BEF的形状(2)若∠BFC=90°,说明AE∥BF22.(8分)如图,在平面直角坐标系中,的顶点坐标分别为A(2,6),B(0,4),C(3,3).(正方形网格的每个小正方形的边长都是1个单位长度)(1)平移后,点A的对应点A1的坐标为(6,6),画出平移后的;(2)画出绕点C1旋转180°得到的;(3)绕点P(_______)旋转180°可以得到,请连接AP、A2P,并求AP在旋转过程中所扫过的面积.23.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度.24.(8分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.25.(10分)已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.26.(10分)解下列方程:(1);(2).
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据相似三角形的各个判定定理逐一分析即可.【详解】解:∵∠A=∠A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但∠A不是两组对应边的夹角,不能判定,故C选项不符合题意;若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意.故选D.【点睛】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键.2、C【分析】由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4.故选C.【点睛】本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.3、C【解析】试题分析:如图所示,连接OA、OB,过O作OF⊥AB,则AF=FB,∠AOF=∠FOB,∵OA=3,AB=,∴AF=AB=,∴sin∠AOF=,∴∠AOF=45°,∴∠AOB=2∠AOF=90°,∴∠ADB=∠AOB=45°,∴∠AEB=180°-45°=135°.故选C.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.4、B【分析】根据角的余弦值与三角形边的关系即可求解.【详解】解:∵∠C=90°,cosA=,AB=10,∴AC=1.故选:B.【点睛】本题主要考查解直角三角形,理解余弦的定义,得到cosA=是解题的关键.5、C【分析】由题意易得,根据两个相似三角形的周长比等于相似比可直接得解.【详解】,,△ADE与△ABC的周长比为2∶5,,.故选C.【点睛】本题主要考查相似三角形的性质,关键是根据两个三角形相似,那么它们的周长比等于相似比.6、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.7、A【分析】根据垂径定理求出AP,根据勾股定理求出OP,求出PC,再根据勾股定理求出即可.【详解】解:连接OA,∵AB=6,OC⊥AB,OC过O,∴AP=BP=AB=3,设⊙O的半径为2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,(2R)2=R2+32,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,AC2=32+()2,解得:AC=2,故选:A.【点睛】考核知识点:垂径定理.构造直角三角形是关键.8、A【分析】作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.【详解】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(-4,0),O点坐标为(0,0),在Rt△BOC中,BC=,∴B点坐标为(-2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(-2,2),故选:A.【点睛】本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.9、B【分析】根据抛物线的对称轴公式:计算即可.【详解】解:抛物线y=x2+2x+3的对称轴是直线故选B.【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.10、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【详解】解:当在直线AB左侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO-=6cm∵以的速度向右移动∴此时的运动时间为:÷2=3s;当在直线AB右侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO+=8cm∵以的速度向右移动∴此时的运动时间为:÷2=4s;综上所述:与直线在3或4秒时相切故选:C.【点睛】此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】连续利用2次平方差公式分解即可.【详解】解:.【点睛】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.12、【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【点睛】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.13、1【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.21,将A(0,1.21)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长.【详解】解:设y轴右侧的抛物线解析式为:y=a(x﹣1)2+2.21∵点A(0,1.21)在抛物线上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴抛物线的解析式为:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴点B坐标为(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案为:1.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.14、【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,∴△AEF和△ABG为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴边长为.故答案为:.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.15、增大.【分析】根据二次函数的增减性可求得答案【详解】∵二次函数y=x2的对称轴是y轴,开口方向向上,∴当y随x的增大而增大,故答案为增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16、110°.【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.17、1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意,得:,解得:,故答案为:1.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率所求情况数与总情况数之比.18、【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴=,∴=,∴y=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴x=时,y有最大值,∴CF的最大值为,∴DF的最小值为5﹣=,∴AF的最小值===,故答案为.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.三、解答题(共66分)19、(1)k=4;(1)点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解析】(1)先求出OA=1,结合tan∠AHO=1可得OH的长,即可得知点M的横坐标,代入直线解析式可得点M坐标,代入反比例解析式可得k的值;
(1)分AM=AP和AM=PM两种情况分别求解可得;
(2)先求出点N(4,1),延长MN交x轴于点C,待定系数法求出直线MN解析式为y=-x+3.据此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再进一步求解可得.【详解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=1x+1上,∴点M的纵坐标为4,即M(1,4),∵点M在y=上,∴k=1×4=4;(1)①当AM=AP时,∵A(0,1),M(1,4),∴AM=,则AP=AM=,∴此时点P的坐标为(0,1﹣)或(0,1+);②若AM=PM时,设P(0,y),则PM=,∴=,解得y=1(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)∵点N(a,1)在反比例函数y=(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有解得,∴直线MN的解析式为y=﹣x+3.∵点C是直线y=﹣x+3与x轴的交点,∴点C的坐标为(3,0),OC=3,∵S△MNQ=2,∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=2,∴QC=1,∵C(3,0),Q(m,0),∴|m﹣3|=1,∴m=7或2,故答案为7或2.【点睛】本题是反比例函数综合问题,解题的关键是掌握待定系数法求一次函数和反比例函数解析式、等腰三角形的判定与性质、两点之间的距离公式及三角形的面积计算.20、(1)①40°;②证明见解析;(2)存在,的长为10或或1【分析】(1)①连接,由圆周角定理得出,求出,,则,即可得出结果;②由,得出,易证,由,,得出,即可得出结论;(2)由勾股定理得,由面积公式得出,求出,连接,则,得出,求出,是等腰三角形,分三种情况讨论,当时,,,;当时,可知点是斜边的中线,得出,;当时,作,则是中点,,求出,,,由,得出,求出,,,则.【详解】(1)①解:连接,如图1所示:是直径,,,,,,,;②证明:,,,,,,,,;(2)解:由,,由勾股定理得:,,即,连接,如图所示:是直径,,,,,,,是等腰三角形,分三种情况:当时,,,;当时,可知点是斜边的中线,,;当时,作,则是中点,,如图所示:,,,,,即,解得:,,,;综上所述,是等腰三角形,符合条件的的长为10或或1.【点睛】本题是圆的综合题目,考查了圆周角定理、勾股定理、等腰三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质,熟练运用圆的基本性质定理是解题的关键.21、(1)等腰直角三角形(2)见解析【分析】(1)利用正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的定义可判断旋转中心为点B,旋转角为90°,根据旋转的性质得∠EBF=∠ABC=90°,BE=BF,则可判断△BEF为等腰直角三角形;(2)根据旋转的性质得∠BEA=∠BFC=90°,从而根据平行线的判定方法可判断AE∥BF.【详解】(1)△BEF为等腰直角三角形,理由如下:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△BFC逆时针旋转后能与△BEA重合,∴旋转中心为点B,∠CBA为旋转角,即旋转角为90°;∵△BFC逆时针旋转后能与△BEA重合,∴∠EBF=∠ABC=90°,BE=BF,∴△BEF为等腰直角三角形;(2)∵△BFC逆时针旋转后能与△BEA重合,∴∠BEA=∠BFC=90°,∴∠BEA+∠EBF=180°,∴AE∥BF.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.22、(1)图见解析;(2)图见解析;(3),AP所扫过的面积为.【分析】(1)先根据点A和的坐标得出平移方式,再根据点坐标的平移变换规律得出点的坐标,然后顺次连接点即可得;(2)先根据旋转的性质得出点的坐标,再顺次连接点即可得;(3)求出的中点坐标即为点P的坐标,再利用两点之间的距离公式可得AP的值,然后利用圆的面积公式即可得扫过的面积.【详解】(1)平移后得到点,的平移方式是向右平移个单位长度,,,即,如图,先在平面直角坐标系中,描出点,再顺次连接即可得到;(2)设点的坐标为,由题意得:点是的中点,则,解得,即,同理可得:,如图,先在平面直角坐标系中,描出点,再顺次连接点即可得到;(3)设点P的坐标为,由题意得:点P是的中点,则,即,,绕点旋转得到,所扫过的图形是以点P为圆心、AP长为半径的半圆,所扫过的面积为.【点睛】本题考查了图形的平移与旋转、点坐标的平移变换规律、圆的面积公式等知识点,熟练掌握点坐标的变换规律是解题关键.23、旗杆AB的高度为【分析】首先根据三角形外角的性质结合等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BE•sin60,然后可得AB的长.【详解】∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20(m),在Rt△BEC中,BC=BE•sin60°,∴AB=BC﹣AC,答:旗杆AB的高度为.【点睛】此题主要考查了解直角三角形的应用,关键是证明BE=DE,掌握三角形函数定义.24、(1);;菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法律法规经济与施工-二级注册建筑师《法律、法规、经济与施工》押题密卷3
- 长春版语文三年级上册教案
- 老年人用药提醒助手
- 海洋生物医药产业布局
- 2024届辽宁省本溪某中学高考化学押题试卷含解析
- 2024高中物理第三章传感器章末质量评估含解析粤教版选修3-2
- 2024高中语文第5单元庄子蚜第2课鹏之徙于南冥训练含解析新人教版选修先秦诸子蚜
- 2024高中语文第五课言之有“理”第3节有话“好好说”-修改蹭训练含解析新人教版选修语言文字应用
- 2024高中语文综合阅读训练2含解析新人教版选修先秦诸子蚜
- 2024高考化学一轮复习第9章化学实验基础第29讲化学实验基础知识和技能精练含解析
- 钢铁生产企业温室气体核算与报告案例
- 农业合作社全套报表(已设公式)-资产负债表-盈余及盈余分配表-成员权益变动表-现金流量表
- 深入浅出Oracle EBS之OAF学习笔记-Oracle EBS技术文档
- 贝利婴幼儿发展量表BSID
- 四年级计算题大全(列竖式计算,可打印)
- 人教部编版八年级历史下册第7课 伟大的历史转折课件(共25张PPT)
- 年会主持词:企业年会主持词
- SB/T 10863-2012家用电冰箱维修服务技术规范
- GB/T 9119-2000平面、突面板式平焊钢制管法兰
- 2020年《小学德育教育校本课程》版
- 偏瘫患者的临床护理及康复评估课件
评论
0/150
提交评论